如圖,拋物線y=x2-4x-1頂點(diǎn)為D,與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求這條拋物線的頂點(diǎn)D的坐標(biāo);
(2)經(jīng)過點(diǎn)(0,4)且與x軸平行的直線與拋物線y=x2-4x-1相交于M、N兩點(diǎn)(M在N的左側(cè)),以MN為直徑作⊙P,過點(diǎn)D作⊙P的切線,切點(diǎn)為E,求點(diǎn)DE的長(zhǎng);
(3)上下平移(2)中的直線MN,以MN為直徑的⊙P能否與x軸相切?如果能精英家教網(wǎng)夠,求出⊙P的半徑;如果不能,請(qǐng)說明理由.
分析:(1)利用配方法即可將函數(shù)解析式變形為:y=(x-2)2-5,由頂點(diǎn)式即可求得這條拋物線的頂點(diǎn)D的坐標(biāo);
(2)由經(jīng)過點(diǎn)(0,4)且與x軸平行的直線與拋物線y=x2-4x-1相交于M、N兩點(diǎn)(M在N的左側(cè)),即可求得M與N的坐標(biāo),即可求得P的坐標(biāo),然后即可求得PE與PD的長(zhǎng),根據(jù)切線的性質(zhì),由勾股定理即可求得DE的長(zhǎng);
(3)根據(jù)已知,可得點(diǎn)P的橫坐標(biāo)為2,又由以MN為直徑的⊙P與x軸相切,可得拋物線過點(diǎn)(2+r,r)或(2+r,-r),將點(diǎn)的坐標(biāo)代入解析式即可求得r的值,則可證得以MN為直徑的⊙P能與x軸相切.
解答:精英家教網(wǎng)解:(1)∵y=x2-4x-1=x2-4x+4-5=(x-2)2-5,
∴點(diǎn)D的坐標(biāo)為(2,-5);

(2)∵當(dāng)y=4時(shí),x2-4x-1=4,
解得x=-1或x=5,
∴M坐標(biāo)為(-1,4),點(diǎn)N坐標(biāo)為(5,4),
∴MN=6.P的半徑為3,點(diǎn)P的坐標(biāo)為(2,4),
連接PE,則PE⊥DE,
∵PD=9,PE=3,
根據(jù)勾股定理得DE=6
2
;

(3)能夠相切.
理由:設(shè)⊙P的半徑為r,根據(jù)拋物線的對(duì)稱性,拋物線過點(diǎn)(2+r,r)或(2+r,-r),
代入拋物線解析式得:(2+r)2-4(2+r)-1=r,
解得r=
21
+1
2
或r=
1-
21
2
(舍去).
把(2+r,-r)代入拋物線得:(2+r)2-4(2+r)-1=-r,
解得:r=
-1+
21
2
,或r=
-1-
21
2
(舍去).
點(diǎn)評(píng):此題考查了二次函數(shù)的一般式與頂點(diǎn)式的轉(zhuǎn)化,還考查了圓的切線的性質(zhì)等知識(shí),是二次函數(shù)的綜合題型.此題綜合性很強(qiáng),注意數(shù)形結(jié)合與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點(diǎn)B、O,它的頂點(diǎn)為A,連接AB,AO.
(1)求點(diǎn)A的坐標(biāo);
(2)以點(diǎn)A、B、O、P為頂點(diǎn)構(gòu)造直角梯形,請(qǐng)求一個(gè)滿足條件的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點(diǎn)A(x1,0)、B(x2,0),點(diǎn)A在點(diǎn)B的左側(cè).當(dāng)x=x2-2時(shí),y
0(填“>”“=”或“<”號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對(duì)稱軸是直線x=-1,且頂點(diǎn)在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線MG,垂足為G,過點(diǎn)M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點(diǎn),若M點(diǎn)的橫坐標(biāo)為x,矩形MNHG的周長(zhǎng)為l.
(1)求出k的值;
(2)寫出l關(guān)于x的函數(shù)解析式;
(3)是否存在點(diǎn)M,使矩形MNHG的周長(zhǎng)最?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•揚(yáng)州)如圖,拋物線y=x2-2x-8交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線AB對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點(diǎn)A、B之間平行移動(dòng),直尺兩長(zhǎng)邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求拋物線頂點(diǎn)M關(guān)于x軸對(duì)稱的點(diǎn)M′的坐標(biāo),并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案