如圖,直線數(shù)學公式分別與x軸、y軸交于A、B兩點;直線數(shù)學公式與AB交于點C,與過點A且平行于y軸的直線交于點D.點E從點A出發(fā),以每秒1個單位的速度沿x軸向左運動.過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN.設正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為t(秒).
(1)求點C的坐標.
(2)當0<t<5時,求S與t之間的函數(shù)關系式.并求出中S的最大值.
(3)當t>0時,直接寫出點(5,3)在正方形PQMN內(nèi)部時t的取值范圍.

解:(1)由題意,得
解得:
∴C(3,);

(2)根據(jù)題意得:AE=t,OE=OA-EA=8-t
∴點Q的縱坐標為(8-t),點P的縱坐標為-(8-t)+6=
∴PQ=(8-t)+6=
當MN在AD上時,10-2t=t,
∴t=;當0<t≤時,
S=AE×PQ=t(10-2t),
即S=-2t2+10t
≤t<5時,
S=PQ2=(10-2t)2,
即S=4t2-40t+100
當0<t≤時,
S=-2(t-2+
∴當t=時,
S最大值=
≤t<5時,S=4(t-5)2,
∵t<5時,S隨t的增大而減小,
∴t=時,S最大值=
,
∴S的最大值為

(3)當t=5時,PQ=0,P,Q,C三點重合;
當t<5時,知OE=4時是臨界條件,即8-t=4
即t=4
∴點Q的縱坐標為5>3,
點(5,3)在正方形邊界PQ上,E繼續(xù)往左移動,則點(5,3)進入正方形內(nèi)部,但點Q的縱坐標再減少,當Q點的縱坐標為3時,OE=4
∴8-t=4
即t=4,
此時OE+PN=4+PQ=4+(10-2t)=6>3滿足條件,
∴3<t<4,
當t>5時,由圖和條件知,則有E(t-8,0),PQ=2t-10要滿足點(5,3)在正方形的內(nèi)部,
則臨界條件N點橫坐標為4?4=PQ+OE=|2t-10|+|t-8|=3t-18
即t=7,此時Q點的縱坐標為:-×2+7=.滿足條件,
∴t>7.
綜上所述:3<t<4或t>7時,點(5,3)都在正方形的內(nèi)部.
分析:(1)首先根據(jù)題意求得A,B,C,D的坐標,然后過點C作CH⊥AD,易得△CPQ∽△CAD,由相似三角形的性質(zhì),即可求得PQ的值,則可求得S與t之間的函數(shù)關系式;
(2)配方,即可求得二次函數(shù)的最大值,即是S的最大值;
(3)當PQ過點(5,3)時,t最;當N與(5,3)重合時,t最大,根據(jù)題意求解即可.
點評:此題考查了一次函數(shù)的綜合應用,考查了相似三角形的性質(zhì)與判定,正方形的性質(zhì)等知識.此題綜合性很強,難度較大,解題時要注意數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,直線y=-x+4分別與x軸,y軸交于A、B兩點,從點P(2,0)射出的光線經(jīng)直線AB反射后再射到直線OB上,最后經(jīng)直線OB反射后又回到P點,則光線所經(jīng)過的路程是( 。
A、2
10
B、6
C、3
3
D、4+2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•青浦區(qū)二模)如圖,直線y=x+1分別與 x軸、y軸分別相交于點A、B.拋物線y=ax2+bx+c(a≠0)與 y軸的正半軸相交于點C,與這個一次函數(shù)的圖象相交于A、D,且sin∠ACB=
10
10

(1)求點A、B、C的坐標;
(2)如果∠CDB=∠ACB,求拋物線y=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年魯教版九年級(上)期中數(shù)學試卷(解析版) 題型:解答題

如圖,直線y=x-3分別與y軸、x軸交于點A,B,拋物線y=-x2+2x+2與y軸交于點C,此拋物線的對稱軸分別與BC,x軸交于點P,Q.
(1)求證:AB=AC;
(2)求證:AP垂直平分線段BC.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山東省煙臺市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•煙臺)如圖,直線分別與y軸、x軸相交于點A,點B,且AB=5,一個圓心在坐標原點,半徑為1的圓,以0.8個單位/秒的速度向y軸正方向運動,設此動圓圓心離開坐標原點的時間為t(t≥0)(秒).
(1)求直線AB的解析式;
(2)如圖1,t為何值時,動圓與直線AB相切;
(3)如圖2,若在圓開始運動的同時,一動點P從B點出發(fā),沿BA方向以1個單位/秒的速度運動,設t秒時點P到動圓圓心C的距離為s,求s與t的關系式;
(4)在(3)中,動點P自剛接觸圓面起,經(jīng)多長時間后離開了圓面?

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江西省初二下學期第一次月考數(shù)學卷 題型:解答題

如圖,直線分別與x軸、y軸交于A、B兩點;直線與AB交于點C,與過點A且平行于y軸的直線交于點D.點E從點A出發(fā),以每秒1個單位的速度沿x軸向左運動.過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN.設正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為t(秒).

⑴求點C的坐標.

⑵當0<t<5時,求S與t之間的函數(shù)關系式.

⑶求⑵中S的最大值.

⑷當t>0時,直接寫出點(4,)在正方形PQMN內(nèi)部時t的取值范圍.

                                               

 

查看答案和解析>>

同步練習冊答案