【題目】如圖,以AB為直徑的半圓O內(nèi)有一條弦AC,點(diǎn)E是弦AC的中點(diǎn),連接BE,并延長(zhǎng)交半圓O于點(diǎn)D,若OB2,OE1,則∠CDE的度數(shù)是_______________.

【答案】30°

【解析】

連接BC.構(gòu)建∠CAB與∠CDE所對(duì)的圓周角.根據(jù)三角形的中位線(xiàn)定理,求得AEO是直角三角形,然后在直角三角形AEO中由30°角所對(duì)的直角邊是斜邊的一半,求得∠CAB=30°;最后根據(jù)圓周角定理求得∠CDE=30°

連接BC

AB是直徑,

∴∠ACB=90°;

E是弦AC的中點(diǎn),O是直徑AB的中點(diǎn),

OEBC,

OEAC;

OB=2,OE=1,

AO=2,

AO=2OE,

∴∠CAB=30°30°角所對(duì)的直角邊是斜邊的一半);

∴∠CDE=30°(同弧所對(duì)的圓周角相等);

故答案是:30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,邊上的中線(xiàn),點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)是點(diǎn),連接并延長(zhǎng)到點(diǎn),使,連接.,點(diǎn)的距離,則四邊形的周長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P在函數(shù)yx0)的圖象上從左向右運(yùn)動(dòng),PAy軸,交函數(shù)y=﹣x0)的圖象于點(diǎn)A,ABx軸交PO的延長(zhǎng)線(xiàn)于點(diǎn)B,則△PAB的面積( 。

A.逐漸變大B.逐漸變小C.等于定值16D.等于定值24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角ABC中,D,E分別為AB,BC中點(diǎn),F(xiàn)為AC上一點(diǎn),且AFE=A,DMEF交AC于點(diǎn)M.

(1)求證:DM=DA;

(2)點(diǎn)G在BE上,且BDG=C,如圖②,求證:DEG∽△ECF;

(3)在圖②中,取CE上一點(diǎn)H,使CFH=B,若BG=1,求EH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)為A(﹣4,1),B(﹣2,3),C(﹣12).

1)畫(huà)出ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的ABC,點(diǎn)A,BC分別是點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn).

2)求過(guò)點(diǎn)B的反比例函數(shù)解析式.

3)判斷AB的中點(diǎn)P是否在(2)的函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC90o,以BC為直徑的半圓⊙OAC于點(diǎn)D,點(diǎn)EAB的中點(diǎn),連接DE并延長(zhǎng),交CB延長(zhǎng)線(xiàn)于點(diǎn)F.

(1)判斷直線(xiàn)DF與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)CF8,DF4,求⊙O的半徑和AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,輪船在A處觀測(cè)燈塔C位于北偏東70o方向上,輪船從A處以每小時(shí)30海里的速度沿南偏東50o方向勻速航行,1小時(shí)后到達(dá)碼頭B處,此時(shí)觀測(cè)燈塔C位于北偏東25o方向上,求燈塔C與碼頭B之間的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年非洲豬瘟疫情暴發(fā)后,專(zhuān)家預(yù)測(cè),2019年我市豬肉售價(jià)將逐月上漲,每千克豬肉的售價(jià)y1(元)與月份x1≤x≤12,且x為整數(shù))之間滿(mǎn)足一次函數(shù)關(guān)系,如下表所示.每千克豬肉的成本y2(元)與月份x1≤x≤12,且x為整數(shù))之間滿(mǎn)足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.

月份x

3

4

5

6

售價(jià)y1/

12

14

16

18

1)求y1x之間的函數(shù)關(guān)系式.

2)求y2x之間的函數(shù)關(guān)系式.

3)設(shè)銷(xiāo)售每千克豬肉所獲得的利潤(rùn)為w(元),求wx之間的函數(shù)關(guān)系式,哪個(gè)月份銷(xiāo)售每千克豬肉所第獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O是坐標(biāo)原點(diǎn),BC兩點(diǎn)的坐標(biāo)分別為(3,-1)、(21).

1)以O點(diǎn)為位似中心在y軸的左側(cè)將OBC放大到兩倍(即新圖與原圖的相似比為2),畫(huà)出圖形;

2B點(diǎn)的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)是 ;C點(diǎn)的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)是 ;

3)在BC上有一點(diǎn)Px,y),按(1)的方式得到的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)是

查看答案和解析>>

同步練習(xí)冊(cè)答案