(2012•鄂州)某私營服裝廠根據(jù)2011年市場分析,決定2012年調(diào)整服裝制作方案,準備每周(按120工時計算)制作西服、休閑服、襯衣共360件,且襯衣至少60件.已知每件服裝的收入和所需工時如下表:
服裝名稱 西服 休閑服 襯衣
工時/件
1
2
1
3
1
4
收入(百元)/件 3 2 1
設(shè)每周制作西服x件,休閑服y件,襯衣z件.
(1)請你分別從件數(shù)和工時數(shù)兩個方面用含有x,y的代數(shù)式表示襯衣的件數(shù)z.
(2)求y與x之間的函數(shù)關(guān)系式.
(3)問每周制作西服、休閑服、襯衣各多少件時,才能使總收入最高?最高總收入是多少?
分析:(1)根據(jù)制作西服、休閑服、襯衣共360件,即可列出第一個式子,根據(jù)制作西服每件
1
2
工時,休閑服每件需
1
3
工時,襯衣每件需
1
4
工時,即可列出第二個式子;
(2)根據(jù)題意得出方程組x+y+z=360和
1
2
x+
1
3
y+
1
4
z=120,用消元法把z消去,即可得出y與x的函數(shù)關(guān)系式;
(3)根據(jù)制作一件西服收入3百元,制作一件休閑服收入2百元,制作一件襯衣收入1百元,得出a=3x+2y+1×z,把y=360-3x代入求出即可.
解答:(1)解:含有x,y的代數(shù)式表示襯衣的件數(shù)z為:①z=360-x-y,②z=(120-
1
2
x-
1
3
y)÷
1
4
,即z=480-2x-
4
3
y;

(2)解:根據(jù)題意得:
x+y+z=360①
1
2
x+
1
3
y+
1
4
z=120②
,
∵①×3得:3x+3y+3z=1080③,
②×12得:6x+4y+3z=1440④,
④-③得:3x+y=360
即y=360-3x,
∴y與x之間的函數(shù)關(guān)系式是y=360-3x;

(3)解:設(shè)總收入是a百元,
則a=3x+2y+1×z=3x+2(360-3x)+1×(120-
1
2
x-
1
3
y)÷
1
4

把y=360-3x代入后整理得:
a=720-x,
∵k=-1<0,a隨x的增大而減少,
∴當x取最小值時,a的值最大,
由題意得:
x≥0
y=360-3x≥0
z=360-x-y≥0
z≥60
,
解得:120≥x≥30,
即x的最小值時30,
當x=30時,y=360-3x=270,z=360-30-270=60,
最高總收入是:a=720-30=690,
答:每周制作西服、休閑服、襯衣分別制30件、270件、60件時,才能使總收入最高,最高總收入是690百元.
點評:本題考查了一次函數(shù)的應(yīng)用,解此題的關(guān)鍵是能把語言轉(zhuǎn)化成數(shù)學(xué)式子來表達,題目比較好,但有一定的難度.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄂州)為了迎接2012年高中招生考試,某中學(xué)對全校九年級進行了一次數(shù)學(xué)摸底考試,并隨機抽取了部分學(xué)生的測試成績作為樣本進行分析,繪制成如圖兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中所給的信息解答下列問題.

(1)請將表示成績類別為“中”的條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中表示成績?yōu)椤皟?yōu)”的扇形所對的圓心角為
72
72
度;
(3)學(xué)校九年級共有600人參加這次數(shù)學(xué)考試,估計該校有多少名學(xué)生成績可以達到優(yōu)秀.

查看答案和解析>>

同步練習冊答案