當(dāng)m>O,n>0,若m,n都擴(kuò)大為原來(lái)的2倍,則分式數(shù)學(xué)公式的值


  1. A.
    擴(kuò)大為原來(lái)的4倍
  2. B.
    擴(kuò)大為原來(lái)的2倍
  3. C.
    不變
  4. D.
    縮小為原來(lái)的數(shù)學(xué)公式
C
分析:根據(jù)分式的基本性質(zhì)(無(wú)論是把分式的分子和分母擴(kuò)大還是縮小相同的倍數(shù),分式的值不變)解答.
解答:根據(jù)題意,得
==,
∴分式中的m,n都擴(kuò)大為原來(lái)的2倍,分式的值不變.
故選C.
點(diǎn)評(píng):本題考查了分式的基本性質(zhì).解題的關(guān)鍵是抓住分子、分母變化的倍數(shù),解此類(lèi)題首先把字母變化后的值代入式子中,然后約分,再與原式比較,最終得出結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABD中,AB=AD,AO平分∠BAD,過(guò)點(diǎn)D作AB的平行線交AO的延長(zhǎng)線于點(diǎn)C,精英家教網(wǎng)連接BC.
(1)求證:四邊形ABCD是菱形;
(2)如果OA,OB(OA>OB)的長(zhǎng)(單位:米)是一元二次方程x2-7x+12=0的兩根,求AB的長(zhǎng)以及菱形ABCD的面積;
(3)若動(dòng)點(diǎn)M從A出發(fā),沿AC以2m/S的速度勻速直線運(yùn)動(dòng)到點(diǎn)C,動(dòng)點(diǎn)N從B出發(fā),沿BD以1m/S的速度勻速直線運(yùn)動(dòng)到點(diǎn)D,當(dāng)M運(yùn)動(dòng)到C點(diǎn)時(shí)運(yùn)動(dòng)停止.若M、N同時(shí)出發(fā),問(wèn)出發(fā)幾秒鐘后,△MON的面積為
14
m2
?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將正方形ABCD繞中心O順時(shí)針旋轉(zhuǎn)角α得到正方形A1B1C1D1,如圖1所示.
(1)當(dāng)α=45°時(shí)(如圖2),若線段OA與邊A1D1的交點(diǎn)為E,線段OA1與AB的交點(diǎn)為F,可得下列結(jié)論成立 ①△EOP≌△FOP;②PA=PA1,試選擇一個(gè)證明.
(2)當(dāng)0°<α<90°時(shí),第(1)小題中的結(jié)論P(yáng)A=PA1還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)在旋轉(zhuǎn)過(guò)程中,記正方形A1B1C1D1與AB邊相交于P,Q兩點(diǎn),探究∠POQ的度數(shù)是否發(fā)生變化?如果變化,請(qǐng)描述它與α之間的關(guān)系;如果不變,請(qǐng)直接寫(xiě)出∠POQ的度數(shù).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:已知,四邊形ABCD中,AD∥BC,DC⊥BC,已知AB=5,BC=6,cosB=
35
,點(diǎn)O為BC邊上的一個(gè)動(dòng)點(diǎn),連接OD,以O(shè)為圓心,BO為半徑的⊙O分別交邊AB于點(diǎn)P,交線段OD于點(diǎn)M,交射線BC于點(diǎn)N,連接MN.
(1)當(dāng)BO=AD時(shí),求BP的長(zhǎng);
(2)點(diǎn)O運(yùn)動(dòng)的過(guò)程中,是否存在BP=MN的情況?若存在,請(qǐng)求出當(dāng)BO為多長(zhǎng)時(shí)BP=MN;若不存在,請(qǐng)說(shuō)明由;
(3)在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,以點(diǎn)C為圓心,CN為半徑作⊙C,請(qǐng)直接寫(xiě)出當(dāng)⊙C存在時(shí),⊙O與⊙C的位置關(guān)系,以及相應(yīng)的⊙C半徑CN的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

拓展與探索:
如圖,在正△ABC中,點(diǎn)E在AC上,點(diǎn)D在BC的延長(zhǎng)線上.

(1)如圖(1),AE=EC=CD,求證:BE=ED;
(2)若E為AC上異于A、C的任一點(diǎn),
①當(dāng)AE=CD時(shí),如圖(2),(1)中結(jié)論是否仍然成立?為什么?
②當(dāng)EC=CD時(shí)呢?
(3)若E為AC延長(zhǎng)線上一點(diǎn),且AE=CD,試探索BE與ED間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一定質(zhì)量的二氧化碳的密度ρ(kg/m3)與體積V(m3)成反比例函數(shù)關(guān)系,且當(dāng)V=3.3m3時(shí),ρ=3kg/m3;若要求二氧化碳的密度不超過(guò)1.5kg/m3,則體積V的變化范圍是
0≤v≤6.6
0≤v≤6.6

查看答案和解析>>

同步練習(xí)冊(cè)答案