如圖,點(diǎn)A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.

(1)求m,k的值; 

(2)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn), 以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,試求直線MN的函數(shù)表達(dá)式.

 

【答案】

(1)m=3,k=12;(2)

【解析】

試題分析:(1)根據(jù)反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)的特征可得,即可求得結(jié)果;

(2)存在兩種情況,①當(dāng)M點(diǎn)在x軸的正半軸上,N點(diǎn)在y軸的正半軸上時(shí),②當(dāng)M點(diǎn)在x軸的負(fù)半軸上,N點(diǎn)在y軸的負(fù)半軸上時(shí),根據(jù)平行四邊形的性質(zhì)求解即可.

(1)由題意可知,

解得m1=3,m2=-1(舍去)

∴A(3,4),B(4,3);

∴k=4×3=12;

(2)存在兩種情況,如圖:

 

①當(dāng)M點(diǎn)在x軸的正半軸上,N點(diǎn)在y軸的正半軸上時(shí),設(shè)M1點(diǎn)坐標(biāo)為(x1,0),N1點(diǎn)坐標(biāo)為(0,y1).

∵四邊形AN1M1B為平行四邊形,

∴線段N1M1可看作由線段AB向左平移3個(gè)單位,再向下平移3個(gè)單位得到的

由(1)知A點(diǎn)坐標(biāo)為(3,4),B點(diǎn)坐標(biāo)為(4,3),

∴N1點(diǎn)坐標(biāo)為(0,1),M1點(diǎn)坐標(biāo)為(1,0)

設(shè)直線M1N1的函數(shù)表達(dá)式為,把x=1,y=0代入,解得

∴直線M1N1的函數(shù)表達(dá)式為;

②當(dāng)M點(diǎn)在x軸的負(fù)半軸上,N點(diǎn)在y軸的負(fù)半軸上時(shí),設(shè)M2點(diǎn)坐標(biāo)為(x2,0),N2點(diǎn)坐標(biāo)為(0,y2). 

∵AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2

∴N1M1∥M2N2,N1M1=M2N2.   

∴線段M2N2與線段N1M1關(guān)于原點(diǎn)O成中心對(duì)稱.

∴M2點(diǎn)坐標(biāo)為(-1,0),N2點(diǎn)坐標(biāo)為(0,-1).

設(shè)直線M2N2的函數(shù)表達(dá)式為,把x=-1,y=0代入,解得

∴直線M2N2的函數(shù)表達(dá)式為 

所以,直線MN的函數(shù)表達(dá)式為

考點(diǎn):反比例函數(shù)的綜合題

點(diǎn)評(píng):此類問題難度較大,在中考中比較常見,一般在壓軸題中出現(xiàn),需特別注意.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B在數(shù)軸上,它們所對(duì)應(yīng)的數(shù)分別是-4、
2x+23x-1
,且點(diǎn)A、B關(guān)于原點(diǎn)O對(duì)稱,求x的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A為⊙O直徑CB延長(zhǎng)線上一點(diǎn),過點(diǎn)A作⊙O的切線AD,切點(diǎn)為D,過點(diǎn)D作DE⊥AC,垂足為F,連接精英家教網(wǎng)BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,試求CE的長(zhǎng).
(3)在(2)的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A的坐標(biāo)為(2
2
,0
),點(diǎn)B在直線y=-x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為( 。
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B在線段MN上,則圖中共有
 
條線段.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點(diǎn)O到直線l的距離為3,如果以點(diǎn)O為圓心的圓上只有兩點(diǎn)到直線l的距離為1,則該圓的半徑r的取值范圍是
2<r<4

查看答案和解析>>

同步練習(xí)冊(cè)答案