【題目】如圖,矩形ABCD中,AB2BC4,點PBC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△ABP沿直線AP折疊,使點B落到點B′處;作∠B′PC的角平分線交CD于點E.設(shè)BPx,CEy,則下列圖象中,能表示yx的函數(shù)關(guān)系的圖象大致是(

A.B.

C.D.

【答案】D

【解析】

根據(jù)折疊可證明ABP∽△PCE,得,進而可得函數(shù)解析式yx4x)=﹣x2+2x,即可判斷函數(shù)圖象.

∵△ABP沿直線AP折疊得到△AB′P,

∴∠APB=∠APB′,

PE平分∠B′PC,

∴∠B′PE=∠CPE,

∴∠APB′+EPB′×180°90°,

∵∠C90°

∴∠CPE+CEP90°,

∴∠APB=∠CEP

∵∠B=∠C90°,

∴△ABP∽△PCE,

BPx,CEy,矩形ABCD中,AB2,BC4,

PC4x,

yx4x)=﹣x2+2x

∴該函數(shù)圖象是拋物線,開口向下.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示AB為O的一條弦,點C為劣弧AB的中點,E為優(yōu)弧AB上一點,點F在AE的延長線上,且BE=EF,線段CE交弦AB于點D.

求證:CEBF;

若BD=2,且EA:EB:EC=3:1:,求BCD的面積(注:根據(jù)圓的對稱性可知OCAB).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的部分圖象如圖,則下列說法錯誤的是(  )

A. 對稱軸是直線x=﹣1

B. abc0

C. b24ac0

D. 方程ax2+bx+c0的根是x1=﹣3x21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ACB=90°,AC=BC,BDDE,AEDE,垂足分別為D、E.(這幾何模型具備“一線三直角”)如下圖:

(1)①請你證明:△ACE△CBD;②若AE=3,BD=5,DE的長;

(2)遷移:如圖:在等腰Rt△ABC中,且∠C=90°,CD=2,BD=3,D、E分別是邊BC,AC上的點,將DE繞點D順時針旋轉(zhuǎn)90°,點E剛好落在邊AB上的點F處,則CE=________。(不要求寫過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC120°,點DBC邊上,D經(jīng)過點A和點B且與BC邊相交于點E

1)求證:ACD的切線;

2)若CE2,求D的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,ADAB

1)作∠BAD的平分線交BC于點E,在AD邊上截取AFAB,連接EF(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)判斷四邊形ABEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架無人機在距離地面高度為13.3米的點A處,測得地面點M的俯角為53°,這架無人機沿仰角為35°的方向飛行了55米到達點B,恰好在地面點N的正上方,M、N在同一水平線上求出M、N兩點之間的距離.(結(jié)果精確到1米)

(參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin35°≈0.57cos35°≈0.82tan35°≈0.70.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其自變量的取值范圍是x>-2,當x=2時,y1=-2;當x=6時,y1=-5

1)根據(jù)給定的條件,求出ab的值和y1的函數(shù)解析式;

2)根據(jù)你所求的函數(shù)解析式,選取適當?shù)淖宰兞?/span>x完成下表,并在下面的平面直角坐標系中描點并畫出函數(shù)的大致圖象.

x

6

y

-5

3)請畫出y2=x-4的圖象,并結(jié)合圖象直接寫出:當y1>y2時,x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某市舉辦的以校園文明為主題的中小學(xué)生手抄報比賽中,各學(xué)校認真組織初賽并按比例篩選出較好的作品參加全市決賽,所有參加市級決賽的作品均獲獎,獎項分為一等獎.二等獎、三等獎和優(yōu)秀獎.現(xiàn)從參加決賽的作品中隨機抽取部分作品并將獲獎結(jié)果繪制成如下兩幅統(tǒng)計圖請你根據(jù)圖中所給信息解答下列問題:

1)一等獎所占的百分比是多少?三等獎的人數(shù)是多少?

2)求三等獎所對應(yīng)的扇形圓心角的度數(shù);

3)若參加決賽的作品有3000份,估計獲得一等獎和二等獎的總?cè)藬?shù)有多少?

查看答案和解析>>

同步練習(xí)冊答案