如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,-2)。

(1)求直線AB的函數(shù)表達(dá)式;
(2)若直線AB上的點(diǎn)C在第一象限,且S△BOC=2,求點(diǎn)C的坐標(biāo)。

(1)直線AB的表達(dá)式為y=2x-2 (2)點(diǎn)C的坐標(biāo)是(2,2)

解析試題分析:(1)設(shè)直線AB的函數(shù)表達(dá)式為y=kx+b,
∵直線AB過(guò)點(diǎn)A(1,0)、點(diǎn)B(0,-2),
,   
解得,   
∴直線AB的表達(dá)式為y=2x-2     
(2)設(shè)點(diǎn)C的坐標(biāo)為(x,y)
∵S△BOC=2,∴,
解得x=2,    
∴y=2×2-2=2。
∴點(diǎn)C的坐標(biāo)是(2,2)。    
考點(diǎn):函數(shù)
點(diǎn)評(píng):本題考查求函數(shù)表達(dá)式,會(huì)用待定系數(shù)法求函數(shù)表達(dá)式是本題考查的目的,考生要掌握好此方法

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線AB與x軸交于點(diǎn)C,與反比例函數(shù)y=
kx
在第二象限的圖象交于點(diǎn)A(-2,6)、點(diǎn)B(-4,m).
(1)求k,m的值; (2)求直線AB的解析式; (3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線AB與x軸、y軸分別交于點(diǎn)A、B,AB=5,cos∠OAB=
4
5
,直線y=
4
3
x-1
分別與直精英家教網(wǎng)線AB、x軸、y軸交于點(diǎn)C、D、E.
(1)求證:∠OED=∠OAB;
(2)直線DE上是否存在點(diǎn)P,使△PBE與△AOB相似,若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)寫(xiě)出A,B兩點(diǎn)的坐標(biāo);(2)求直線AB的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線AB與x軸、y軸分別相交于A、B兩點(diǎn),將直線AB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到直線A1B1
(1)在圖中畫(huà)出直線A1B1
(2)求出直線A1B1的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線AB與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)是(2,0),∠ABO=30°.在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)O外),使得△APB與△AOB全等.請(qǐng)寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo)
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3

查看答案和解析>>

同步練習(xí)冊(cè)答案