【題目】(模型建立)
(1)如圖1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直線(xiàn)ED經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A作AD⊥ED于點(diǎn)D,過(guò)點(diǎn)B作BE⊥ED于點(diǎn)E,求證:△BEC≌△CDA;
(模型應(yīng)用)
(2)如圖2,已知直線(xiàn)11:y=2x+3與x軸交于點(diǎn)A、與y軸交于點(diǎn)B,將直線(xiàn)11繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°至直線(xiàn)12;求直線(xiàn)12的函數(shù)表達(dá)式;
(3)如圖3,平面直角坐標(biāo)系內(nèi)有一點(diǎn)B(3,-4),過(guò)點(diǎn)B作BA⊥x軸于點(diǎn)A、BC⊥y軸于點(diǎn)C,點(diǎn)P是線(xiàn)段AB上的動(dòng)點(diǎn),點(diǎn)D是直線(xiàn)y=-2x+1上的動(dòng)點(diǎn)且在第四象限內(nèi).試探究△CPD能否成為等腰直角三角形?若能,求出點(diǎn)D的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2);(3)能,點(diǎn)D的坐標(biāo)為或或
【解析】
(1)由垂直的定義得∠ADC=∠CEB=90°,平角的定義和同角的余角的相等求出∠DAC=∠ECB,角角邊證明△CDA≌△BEC;
(2)證明△ABO≌∠BCD,求出點(diǎn)C的坐標(biāo)為(-3,5),由點(diǎn)到直線(xiàn)上構(gòu)建二元一次方程組求出k=-5,b=-10,待定系數(shù)法求出直線(xiàn)l2的函數(shù)表達(dá)式為y=-5x-10;
(3)構(gòu)建△MCP≌△HPD,由其性質(zhì),點(diǎn)D在直線(xiàn)y=-2x+1求出m=或n=0或-,將m的值代入點(diǎn)D坐標(biāo)得(,-)或(4,-7)或(,-).
解:(1)如圖:
∵AD⊥ED,BE⊥ED,
∴∠ADC=∠CEB=90°,
又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,
∴∠ACD+∠BEC=90°,
又∵∠ACD+∠DAC=90°,
∴∠DAC=∠ECB,
在△CDA和△BEC中,
∴△CDA≌△BEC(AAS);
(2)過(guò)點(diǎn)B作BC⊥AB交AC于點(diǎn)C,CD⊥y軸交y軸
于點(diǎn)D,如圖2所示:
∵CD⊥y軸,x軸⊥y軸,
∴∠CDB=∠BOA=90°,
又∵BC⊥AB,
∴∠ABC=90°,
又∵∠ABO+∠ABC+∠CBD=180°,
∴∠ABO+∠CBD=90°,
又∵∠BAO+∠ABO=90°,
∴∠BAO=∠CBD,
又∵∠BAC=45°,
∴∠ACB=45°,
∴AB=CB,
在△ABO和∠BCD中,
∴AO=BD,BO=CD,
又∵直線(xiàn)l1:y=2x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,
∴點(diǎn)A、B兩點(diǎn)的坐標(biāo)分別為(,0),(0,3),
∴AO=,BO=3,
∴BD=,CD=3,
∴點(diǎn)C的坐標(biāo)為(-3,),
設(shè)l2的函數(shù)表達(dá)式為y=kx+b(k≠0),
點(diǎn)A、C兩點(diǎn)在直線(xiàn)l2上,依題意得:
,解得:
l2的函數(shù)表達(dá)式為:
(3)能成為等腰直角三角形,依題意得,
①若點(diǎn)P為直角時(shí),如圖3甲所示:
設(shè)點(diǎn)P的坐標(biāo)為(3,m),則PB的長(zhǎng)為4+m,
∵∠CPD=90°,CP=PD,
∠CPM+∠CDP+∠PDH=180°,
∴∠CPM+∠PDH=90°,
又∵∠CPM+∠DPM=90°,
∴∠PCM=∠PDH,
在△MCP和△HPD中,
∴△MCP≌△HPD(AAS),
∴CM=PH,PM=PD,
∴點(diǎn)D的坐標(biāo)為(7+m,-3+m),
又∵點(diǎn)D在直線(xiàn)y=-2x+1上,
∴-2(7+m)+1=-3+m,
解得:
即點(diǎn)D的坐標(biāo)為
②若點(diǎn)C為直角時(shí),如圖所示:
設(shè)點(diǎn)P的坐標(biāo)為(3,n),則PB的長(zhǎng)為4+n,
CA=CD,
同理可證明△PCM≌△CDH(AAS),
∴PM=CH,MC=HD,
∴點(diǎn)D的坐標(biāo)為(4+n,-7),
又∵點(diǎn)D在直線(xiàn)y=-2x+1上,
∴-2(4+n)+1=-7,
解得:n=0,
∴點(diǎn)P與點(diǎn)A重合,點(diǎn)M與點(diǎn)O重合,
即點(diǎn)D的坐標(biāo)為(4,-7);
③若點(diǎn)D為直角時(shí),如圖所示:
設(shè)點(diǎn)P的坐標(biāo)為(3,k),則PB的長(zhǎng)為4+k,
CD=PD,
同理可證明△CDM≌△PDQ(AAS),
∴MD=PQ,MC=DQ,
∴點(diǎn)D的坐標(biāo)為
又∵點(diǎn)D在直線(xiàn)y=-2x+1上,
,解得:
∴點(diǎn)P與點(diǎn)A重合,點(diǎn)M與點(diǎn)O重合,
即點(diǎn)D的坐標(biāo)為
綜合所述,點(diǎn)D的坐標(biāo)為或或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角中,,點(diǎn)為上一點(diǎn),連接,以為直角頂點(diǎn)做等腰直角,連接交于點(diǎn),若,則的度數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩地相距60km,甲從A地去B地,乙從B地去A地,圖中、分別表示甲、乙兩人到B地的距離y(km)與甲出發(fā)時(shí)間x(h)的函數(shù)關(guān)系圖象.
(1)根據(jù)圖象,求乙的行駛速度.
(2)解釋交點(diǎn)A的實(shí)際意義.
(3)求甲出發(fā)多少時(shí)間,兩人之間恰好相距5km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地間的直線(xiàn)公路長(zhǎng)為千米.一輛轎車(chē)和一輛貨車(chē)分別沿該公路從甲、乙兩地以各自的速度勻速相向而行,貨車(chē)比轎車(chē)早出發(fā)小時(shí),途中轎車(chē)出現(xiàn)了故障,停下維修,貨車(chē)仍繼續(xù)行駛.小時(shí)后轎車(chē)故障被排除,此時(shí)接到通知,轎車(chē)立刻掉頭按原路原速返回甲地(接到通知及掉頭時(shí)間不計(jì)).最后兩車(chē)同時(shí)到達(dá)甲地,已知兩車(chē)距各自出發(fā)地的距離(千米)與轎車(chē)所用的時(shí)間(小時(shí))的關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:
(1)貨車(chē)的速度是_______千米/小時(shí);轎車(chē)的速度是_______千米/小時(shí);值為_______.
(2)求轎車(chē)距其出發(fā)地的距離(千米)與所用時(shí)間(小時(shí))之間的函數(shù)關(guān)系式并寫(xiě)出自變量的取值范圍;
(3)請(qǐng)直接寫(xiě)出貨車(chē)出發(fā)多長(zhǎng)時(shí)間兩車(chē)相距千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程組解應(yīng)用題某校組織“大手拉小手,義賣(mài)獻(xiàn)愛(ài)心”活動(dòng),計(jì)劃購(gòu)買(mǎi)黑、白兩種顏色的文化衫進(jìn)行手繪設(shè)計(jì)后出售,并將所獲利潤(rùn)全部捐給山區(qū)困難孩子.已知該學(xué)校從批發(fā)市場(chǎng)花2400元購(gòu)買(mǎi)了黑、白兩種顏色的文化衫100件,每件文化衫的批發(fā)價(jià)及手繪后的零售價(jià)如表:
批發(fā)價(jià)(元) | 零售價(jià)(元) | |
黑色文化衫 | 25 | 45 |
白色文化衫 | 20 | 35 |
(1)學(xué)校購(gòu)進(jìn)黑、白文化衫各幾件?
(2)通過(guò)手繪設(shè)計(jì)后全部售出,求該校這次義賣(mài)活動(dòng)所獲利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD邊上的一動(dòng)點(diǎn),它從點(diǎn)A出發(fā)沿在A→B→C→D路徑勻速運(yùn)動(dòng)到點(diǎn)D,設(shè)△PAD的面積為y,P點(diǎn)的運(yùn)動(dòng)時(shí)間為x,則y關(guān)于x的函數(shù)圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下面一段材料,再完成后面的問(wèn)題:
材料:過(guò)拋物線(xiàn)y=ax2(a>0)的對(duì)稱(chēng)軸上一點(diǎn)(0,﹣)作對(duì)稱(chēng)軸的垂線(xiàn)l,則拋物線(xiàn)上任意一點(diǎn)P到點(diǎn)F(0,)的距離與P到l的距離一定相等,我們將點(diǎn)F與直線(xiàn)l分別稱(chēng)作這拋物線(xiàn)的焦點(diǎn)和準(zhǔn)線(xiàn),如y=x2的焦點(diǎn)為(0,).
問(wèn)題:若直線(xiàn)y=kx+b交拋物線(xiàn)y=x2于A、B、AC、BD垂直于拋物線(xiàn)的準(zhǔn)線(xiàn)l,垂直足分別為C、D(如圖).
①求拋物線(xiàn)y=x2的焦點(diǎn)F的坐標(biāo);
②求證:直線(xiàn)AB過(guò)焦點(diǎn)時(shí),CF⊥DF;
③當(dāng)直線(xiàn)AB過(guò)點(diǎn)(﹣1,0),且以線(xiàn)段AB為直徑的圓與準(zhǔn)線(xiàn)l相切時(shí),求這條直線(xiàn)對(duì)應(yīng)的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)的頂點(diǎn)為P(﹣3,3),與y軸交于點(diǎn)A(0,4),若平移該拋物線(xiàn)使其頂點(diǎn)P沿直線(xiàn)移動(dòng)到點(diǎn)P′(3,﹣3),點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,則拋物線(xiàn)上PA段掃過(guò)的區(qū)域(陰影部分)的面積為( )
A. 24 B. 12 C. 6 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com