如圖,在△ABC中,∠B=90°,D為BC的中點(diǎn),連接AD,若∠ADB=60°,AB=數(shù)學(xué)公式,求△ACD的周長(結(jié)果保留根號(hào))

解:在Rt△ABD中,BD===2,
∵∠ADB=60°,
∴∠DAB=30°,
∴AD=2BD=4,
∵D為BC的中點(diǎn),
∴BD=CD=2,
∴BC=4,
在Rt△ABC中,AC==2,
∴△ACD的周長=AD+CD+AC=6+2
分析:首先在直角三角形ABD中利用銳角三角函數(shù)求出BD的長,進(jìn)而得到AD的長,根據(jù)勾股定理在求出AC的長即可求出△ACD的周長.
點(diǎn)評(píng):本題考查了解直角三角形的問題,解題的關(guān)鍵是正確的利用好邊角關(guān)系和勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案