如圖,將證明三角形全等的理由用字母表示填寫在后面的括號內(nèi)。

 

 

①若AB=DC,AC=DB,則△ABC≌△DCB的道理是(           ).

   

②若∠A=∠D,∠ABC=∠DCB,則△ABC≌△DCB的道理是(           ).

 

③若∠1=∠2,∠3=∠4,則△ABC≌△DCB的道理是(           ).

 

④若∠A=∠D=900,AC=DB,則△ABC≌△DCB的道理是(           ).

 

【答案】

(1)SSS    (2)AAS      (3)ASA     (4)HL

【解析】三角形全等的判定方法有SSS、SAS、ASA、AAS、HL,根據(jù)不同的條件選擇恰當?shù)呐卸ǚ椒ā?/p>

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,將兩個全等的直角三角形△ABD、△ACE拼在一起(圖1).△ABD不動,

(1)若將△ACE繞點A逆時針旋轉(zhuǎn),連接DE,M是DE的中點,連接MB、MC(圖2),證明:MB=MC.
(2)若將圖1中的CE向上平移,∠CAE不變,連接DE,M是DE的中點,連接MB、MC(圖3),判斷并直接寫出MB、MC的數(shù)量關系.
(3)在(2)中,若∠CAE的大小改變(圖4),其他條件不變,則(2)中的MB、MC的數(shù)量關系還成立嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年陜西中等音樂學校七年級下學期期末數(shù)學試卷(B)(帶解析) 題型:解答題

如圖,將證明三角形全等的理由用字母表示填寫在后面的括號內(nèi)。

①若AB=DC,AC=DB,則△ABC≌△DCB的道理是(          ).
②若∠A=∠D,∠ABC=∠DCB,則△ABC≌△DCB的道理是(          ).
③若∠1=∠2,∠3=∠4,則△ABC≌△DCB的道理是(          ).
④若∠A=∠D=900,AC=DB,則△ABC≌△DCB的道理是(          ).

查看答案和解析>>

科目:初中數(shù)學 來源:2013年安徽省合肥市第44中學中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

如圖,將兩個全等的直角三角形△ABD、△ACE拼在一起(圖1).△ABD不動,

(1)若將△ACE繞點A逆時針旋轉(zhuǎn),連接DE,M是DE的中點,連接MB、MC(圖2),證明:MB=MC.
(2)若將圖1中的CE向上平移,∠CAE不變,連接DE,M是DE的中點,連接MB、MC(圖3),判斷并直接寫出MB、MC的數(shù)量關系.
(3)在(2)中,若∠CAE的大小改變(圖4),其他條件不變,則(2)中的MB、MC的數(shù)量關系還成立嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年河北省承德三中中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

如圖,將兩個全等的直角三角形△ABD、△ACE拼在一起(圖1).△ABD不動,

(1)若將△ACE繞點A逆時針旋轉(zhuǎn),連接DE,M是DE的中點,連接MB、MC(圖2),證明:MB=MC.
(2)若將圖1中的CE向上平移,∠CAE不變,連接DE,M是DE的中點,連接MB、MC(圖3),判斷并直接寫出MB、MC的數(shù)量關系.
(3)在(2)中,若∠CAE的大小改變(圖4),其他條件不變,則(2)中的MB、MC的數(shù)量關系還成立嗎?說明理由.

查看答案和解析>>

同步練習冊答案