【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α= .
【答案】20°
【解析】
試題分析:根據(jù)矩形的性質(zhì)得∠B=∠D=∠BAD=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠D′=∠D=90°,∠4=α,利用對頂角相等得到∠1=∠2=110°,再根據(jù)四邊形的內(nèi)角和為360°可計算出∠3=70°,然后利用互余即可得到∠α的度數(shù).
解:如圖,
∵四邊形ABCD為矩形,
∴∠B=∠D=∠BAD=90°,
∵矩形ABCD繞點A順時針旋轉(zhuǎn)得到矩形AB′C′D′,
∴∠D′=∠D=90°,∠4=α,
∵∠1=∠2=110°,
∴∠3=360°﹣90°﹣90°﹣110°=70°,
∴∠4=90°﹣70°=20°,
∴∠α=20°.
故答案為:20°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E,F分別在邊DC,AB上,DE=BF,把平行四邊形沿直線EF折疊,使得點B,C分別落在B′,C′處,線段EC′與線段AF交于點G,連接DG,B′G.
求證:(1)∠1=∠2;
(2)DG=B′G.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3
(1)畫出它的圖象;
(2)當x取何值時,函數(shù)值為0;
(3)觀察圖象,當x取何值時,函數(shù)值大于0?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為( )
A.﹣4 B.4 C.﹣2 D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下列結論:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四邊形DEOF中正確的有( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形DEFG是△ABC的內(nèi)接矩形,如果△ABC的高線AH長8cm,底邊BC長10cm,設DG=xcm,DE=ycm,
(1)求y關于x的函數(shù)關系式;
(2)當x為何值時,四邊形DEFG的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,是真命題的是( )
A. 對角線互相平分且相等的四邊形是正方形
B. 對角線互相平分的四邊形是平行四邊形
C. 對角線相等的四邊形是矩形
D. 對角線互相垂直的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,二次函數(shù)y=ax2﹣2ax+c(a>0)的圖象與y軸交于點C(0,﹣4),與x軸交于點A、B兩點,點A的坐標為(4,0).
(1)求該拋物線的函數(shù)解析式;
(2)點P(t,0)是線段OB上一動點(不與O、B重合),點E是線段BC上的點,以點B、P、E為頂點的三角形與三角形ABC相似,連結CP,求△CPE的面積S與t的函數(shù)關系式;
(3)如圖2,若平行于x軸的動直線與該拋物線交于點Q,與直線AC交于點F,點D的坐標為(2,0),則存在這樣的直線,使得△ODF為等腰三角形,請直接寫出點Q坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖△ABC中,D是AB的中點,E是AC上一點,EF∥AB,DF∥BE.
(1)猜想:DF與AE的關系是 ;
(2)試說明你猜想的正確性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com