(2009•深圳)如圖,AB是⊙O的直徑,AB=10,DC切⊙O于點C,AD⊥DC,垂足為D,AD交⊙O于點E.
(1)求證:AC平分∠BAD;
(2)若sin∠BEC=,求DC的長.

【答案】分析:(1)連接OC,易證AD∥OC,則∠DAC=∠ACO,則只要證明∠CAO=∠ACO,根據(jù)等邊對等角即可證明;
(2)∠BEC=∠BAC,則直角△ABC中即可求得∠ABC,根據(jù)三角函數(shù)即可求得AB、AC的長,而∠DCA=∠CBA,在直角△ACD中即可利用三角函數(shù)求得CD的長.
解答:(1)證明:連接OC,由DC是切線得OC⊥DC;
又AD⊥DC,
∴AD∥OC,
∴∠DAC=∠ACO.
又由OA=OC得∠BAC=∠ACO,
∴∠DAC=∠BAC.
即AC平分∠BAD.

(2)解:方法一:∵AB為直徑,
∴∠ACB=90°
又∵∠BAC=∠BEC,
∴BC=AB•sin∠BAC=AB•sin∠BEC=6.
∴AC=
又∵∠DAC=∠BAC=∠BEC,且AD⊥DC,
∴CD=AC•sin∠DAC=AC•sin∠BEC=
方法二:∵AB為直徑,
∴∠ACB=90°.
又∵∠BAC=∠BEC,
∴BC=AB•sin∠BAC=AB•sin∠BEC=6.

又∵∠DAC=∠BAC,∠D=∠ACB=90°,
∴△ADC∽△ACB,
,即,
解得
點評:本題考查了圓的切線的性質(zhì)及解直角三角形的知識.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年中考數(shù)學三輪復習每天30分綜合訓練(14)(解析版) 題型:解答題

(2009•深圳)如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.
(1)求證:△ABE≌△CBF;
(2)若∠ABE=50°,求∠EGC的大小.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學三輪復習每天30分綜合訓練(14)(解析版) 題型:填空題

(2009•深圳)如圖,點A為反比例函數(shù)y=的圖象在第二象限上的任一點,AB⊥x軸于B,AC⊥y軸于C,則矩形ABOC的面積是   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省荊州市中考仿真模擬考試數(shù)學試卷二(解析版) 題型:選擇題

(2009•深圳)如圖,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,則DE的長度是( )

A.3
B.5
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省蕪湖市中考數(shù)學模擬試卷(一)(解析版) 題型:選擇題

(2009•深圳)如圖,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,則DE的長度是( )

A.3
B.5
C.
D.

查看答案和解析>>

同步練習冊答案