【題目】如圖,二次函數(shù)圖象的頂點為,對稱軸是直線,一次函數(shù)的圖象與軸交于點,且與直線關于的對稱直線交于點

1)點的坐標是 ______;

2)直線與直線交于點,是線段上一點(不與點、重合),點的縱坐標為.過點作直線與線段、分別交于點,,使得相似.

①當時,求的長;

②若對于每一個確定的的值,有且只有一個相似,請直接寫出的取值范圍 ______

【答案】1;(2)①;②.

【解析】

1)直接用頂點坐標公式求即可;

2)由對稱軸可知點C2,),A-0),點A關于對稱軸對稱的點(0),借助AD的直線解析式求得B5,3);①當n=時,N2,),可求DA=,DN=CD=,當PQAB時,DPQ∽△DAB,DP=9;當PQAB不平行時,DP=9;②當PQAB,DB=DP時,DB=3,DN=,所以N2),則有且只有一個DPQDAB相似時,n.

1)頂點為;

故答案為;

2)對稱軸

,

由已知可求

關于對稱點為,

關于對稱的直線為,

①當時,

,,

時,,

,

,

;

不平行時,,

,

綜上所述

②當,時,

,

,

,

∴有且只有一個相似時,;

故答案為;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是某小型汽車的側面示意圖,其中矩形ABCD表示該車的后備箱,在打開后備箱的過程中,箱蓋ADE可以繞點A逆時針方向旋轉,當旋轉角為60°時,箱蓋ADE落在AD'E'的位置(如圖2所示).已知AD90厘米,DE30厘米,EC40厘米.

1)求點D'BC的距離;

2)求E、E'兩點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點O逆時針旋轉90°后得到A2B2C2,請畫出A2B2C2

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5a≠0)與x軸交于點A﹣50)和點B3,0),與y軸交于點C

1)求該拋物線的解析式;

2)若點Ex軸下方拋物線上的一動點,當SABE=SABC時,求點E的坐標;

3)在(2)的條件下,拋物線上是否存在點P,使∠BAP=∠CAE?若存在,求出點P的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知為銳角內部一點,過點于點,于點,以為直徑作,交直線于點,連接,于點.

1)求證:.

2)連接,當,時,在點的整個運動過程中.

①若,求的長.

②若為等腰三角形,求所有滿足條件的的長.

3)連接,于點,當,時,記的面積為,的面積為,請寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地為打造宜游環(huán)境,對旅游道路進行改造.如圖是風景秀美的觀景山,從山腳B到山腰D沿斜坡已建成步行道,為方便游客登頂觀景,欲從DA修建電動扶梯,經測量,山高AC154米,步行道BD168米,∠DBC30°,在D處測得山頂A的仰角為45°.求電動扶梯DA的長(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義一種新函數(shù):形如,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學畫出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個結論:①圖象與坐標軸的交點為,;②圖象具有對稱性,對稱軸是直線;③當時,函數(shù)值值的增大而增大;④當時,函數(shù)的最小值是0;⑤當時,函數(shù)的最大值是4.其中正確結論的個數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD和正方形AEFG中,邊AE在邊AB上,AB=AE=1.將正方形AEFG繞點A逆時針旋轉,設BE的延長線交直線DG于點P,當點P,G第一次重合時停止旋轉.在這個過程中:

1)∠BPD=______度;

2)點P所經過的路徑長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電視臺為了解本地區(qū)電視節(jié)目的收視情況,對部分市民開展了你最喜愛的電視節(jié)目的問卷調查(每人只填寫一項),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖(如圖所示),根據(jù)要求回答下列問題:

(1)本次問卷調查共調查了________名觀眾;圖②中最喜愛新聞節(jié)目的人數(shù)占調查總人數(shù)的百分比為________;

(2)補全圖①中的條形統(tǒng)計圖;

(3)現(xiàn)有最喜愛新聞節(jié)目(記為),“體育節(jié)目(記為),“綜藝節(jié)目(記為),“科普節(jié)目(記為)的觀眾各一名,電視臺要從四人中隨機抽取兩人參加聯(lián)誼活動,請用列表或畫樹狀圖的方法,求出恰好抽到最喜愛兩位觀眾的概率.

查看答案和解析>>

同步練習冊答案