(2012•荊州)如圖所示為圓柱形大型儲(chǔ)油罐固定在U型槽上的橫截面圖.已知圖中ABCD為等腰梯形(AB∥DC),支點(diǎn)A與B相距8m,罐底最低點(diǎn)到地面CD距離為1m.設(shè)油罐橫截面圓心為O,半徑為5m,∠D=56°,求:U型槽的橫截面(陰影部分)的面積.(參考數(shù)據(jù):sin53°≈0.8,tan56°≈1.5,π≈3,結(jié)果保留整數(shù))
分析:連接AO、BO.過點(diǎn)A作AE⊥DC于點(diǎn)E,過點(diǎn)O作ON⊥DC于點(diǎn)N,ON交⊙O于點(diǎn)M,交AB于點(diǎn)F,則OF⊥AB,先根據(jù)垂徑定理求出AF的值,再在Rt△AOF中利用銳角三角函數(shù)的定義求出∠AOB的度數(shù),由勾股定理求出OF的長(zhǎng),根據(jù)四邊形ABCD是等腰梯形求出AE的長(zhǎng),再由S=S梯形ABCD-(S扇OAB-S△OAB)即可得出結(jié)論.
解答:解:如圖,連接AO、BO.過點(diǎn)A作AE⊥DC于點(diǎn)E,過點(diǎn)O作ON⊥DC于點(diǎn)N,ON交⊙O于點(diǎn)M,交AB于點(diǎn)F.則OF⊥AB.
∵OA=OB=5m,AB=8m,OM是半徑,OM⊥AB,
∴AF=BF=
1
2
AB=4(m),∠AOB=2∠AOF,
在Rt△AOF中,sin∠AOF=
AF
AO
=0.8=sin53°,
∴∠AOF=53°,則∠AOB=106°,
∵OF=
OA2-AF2
=3(m),由題意得:MN=1m,
∴FN=OM-OF+MN=3(m),
∵四邊形ABCD是等腰梯形,AE⊥DC,F(xiàn)N⊥AB,
∴AE=FN=3m,DC=AB+2DE.
在Rt△ADE中,tan56°=
AE
DE
=
3
2

∴DE=2m,DC=12m.
∴S=S梯形ABCD-(S扇OAB-S△OAB)=
1
2
(8+12)×3-(
106
360
π×52-
1
2
×8×3)≈20(m2).
答:U型槽的橫截面積約為20m2
點(diǎn)評(píng):本題考查的是垂徑定理的應(yīng)用及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形及等腰梯形,再利用勾股定理進(jìn)行求解是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•荊州)如圖,△ABC是等邊三角形,P是∠ABC的平分線BD上一點(diǎn),PE⊥AB于點(diǎn)E,線段BP的垂直平分線交BC于點(diǎn)F,垂足為點(diǎn)Q.若BF=2,則PE的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•荊州)如圖,在直角坐標(biāo)系中,四邊形OABC是直角梯形,BC∥OA,⊙P分別與OA、OC、BC相切于點(diǎn)E、D、B,與AB交于點(diǎn)F.已知A(2,0),B(1,2),則tan∠FDE=
1
2
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•荊州)如圖是一個(gè)上下底密封紙盒的三視圖,請(qǐng)你根據(jù)圖中數(shù)據(jù),計(jì)算這個(gè)密封紙盒的表面積為
(75
3
+360)
(75
3
+360)
cm2.(結(jié)果可保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•荊州)如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/秒.設(shè)P、Q同發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5;②cos∠ABE=
3
5
;③當(dāng)0<t≤5時(shí),y=
2
5
t2;④當(dāng)t=
29
4
秒時(shí),△ABE∽△QBP;其中正確的結(jié)論是
①③④
①③④
(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•荊州)如圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點(diǎn)在B點(diǎn)的拋物線交x軸于點(diǎn)A、D,交y軸于點(diǎn)E,連接AB、AE、BE.已知tan∠CBE=
13
,A(3,0),D(-1,0),E(0,3).
(1)求拋物線的解析式及頂點(diǎn)B的坐標(biāo);
(2)求證:CB是△ABE外接圓的切線;
(3)試探究坐標(biāo)軸上是否存在一點(diǎn)P,使以D、E、P為頂點(diǎn)的三角形與△ABE相似,若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)設(shè)△AOE沿x軸正方向平移t個(gè)單位長(zhǎng)度(0<t≤3)時(shí),△AOE與△ABE重疊部分的面積為s,求s與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案