如圖,Rt△ABC中,∠C=90°,EF⊥AB,BE=10,數(shù)學(xué)公式,則EF的長為________.

6
分析:首先證△BEF∽△BAC,根據(jù)相似三角形的對(duì)應(yīng)線段成比例,可求出EF、BF的比例關(guān)系,進(jìn)而可由勾股定理求出EF的長.
解答:∵∠BFE=∠C=90°,且∠EBF=∠ABC,
∴△BEF∽△BAC;
=;
設(shè)EF=3x,BF=4x;由勾股定理,得:
(3x)2+(4x)2=102,解得x=2;
即EF=3x=6.
點(diǎn)評(píng):此題考查了相似三角形的判定和性質(zhì)以及勾股定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且要求其中一個(gè)三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(2)求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案