【題目】如圖,已知拋物線y=(x+2)(x﹣4)與x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,M為拋物線的頂點(diǎn).

(1)求點(diǎn)A、B、C的坐標(biāo);

(2)設(shè)動(dòng)點(diǎn)N(﹣2,n),求使MN+BN的值最小時(shí)n的值;

(3)P是拋物線上一點(diǎn),請你探究:是否存在點(diǎn)P,使以P、A、B為頂點(diǎn)的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

【答案】(1)點(diǎn)C(0,﹣)  (2)﹣ 。3)(﹣4,2)或(6,2)或(0,﹣

【解析】(1)令y=0可求得點(diǎn)A、點(diǎn)B的橫坐標(biāo),令x=0可求得點(diǎn)C的縱坐標(biāo);

(2)根據(jù)兩點(diǎn)之間線段最短作M點(diǎn)關(guān)于直線x=﹣2的對稱點(diǎn)M′,當(dāng)N(﹣2,N)在直線M′B上時(shí),MN+BN的值最;

(3)需要分類討論:△PAB∽△ABD、△PAB∽△ABD,根據(jù)相似三角形的性質(zhì)求得PB的長度,然后可求得點(diǎn)P的坐標(biāo).

解:(1)令y=0得x1=﹣2,x2=4,

∴點(diǎn)A(﹣2,0)、B(4,0)

令x=0得y=﹣,

∴點(diǎn)C(0,﹣

(2)將x=1代入拋物線的解析式得y=﹣

∴點(diǎn)M的坐標(biāo)為(1,﹣

∴點(diǎn)M關(guān)于直線x=﹣2的對稱點(diǎn)M′的坐標(biāo)為(﹣5,

設(shè)直線M′B的解析式為y=kx+b

將點(diǎn)M′、B的坐標(biāo)代入得:

解得:

所以直線M′B的解析式為y=×

將x=﹣2代入得:y=﹣,

所以n=﹣

(3)過點(diǎn)D作DE⊥BA,垂足為E.

由勾股定理得:

AD===3

BD===,

如下圖,①當(dāng)P1AB∽△ADB時(shí),

=即:=,

∴P1B=6

過點(diǎn)P1作P1M1⊥AB,垂足為M1

=即:=

解得:P1M1=6

=即:=

解得:BM1=12

∴點(diǎn)P1的坐標(biāo)為(﹣8,6

∵點(diǎn)P1不在拋物線上,所以此種情況不存在;

②當(dāng)△P2AB∽△BDA時(shí),=即:=

∴P2B=6,

過點(diǎn)P2作P2M2⊥AB,垂足為M2

=,即:=

∴P2M2=2,

=,即:=

∴M2B=8

∴點(diǎn)P2的坐標(biāo)為(﹣4,2

將x=﹣4代入拋物線的解析式得:y=2,

∴點(diǎn)P2在拋物線上.

由拋物線的對稱性可知:點(diǎn)P2與點(diǎn)P4關(guān)于直線x=1對稱,

∴P4的坐標(biāo)為(6,2),

當(dāng)點(diǎn)P3位于點(diǎn)C處時(shí),兩三角形全等,所以點(diǎn)P3的坐標(biāo)為(0,﹣),

綜上所述點(diǎn)P的坐標(biāo)為:(﹣4,2)或(6,2)或(0,﹣)時(shí),以P、A、B為頂點(diǎn)的三角形與△ABD相似.

“點(diǎn)睛”本題綜合考查了二次函數(shù)、一次函數(shù)、軸對稱…路徑最短、相似三角形的性質(zhì),難度較大,利用相似三角形的性質(zhì)求得PB的長是解題的關(guān)鍵,解答本題需要注意的是在不確定相似三角形的對應(yīng)角和對應(yīng)邊的情況下分類討論,不要漏解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于點(diǎn)F.

(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=3,AB=4,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+3的圖象與x軸,y軸交于A,B兩點(diǎn),與反比例函數(shù)的圖象相交于C,D兩點(diǎn),分別過C,D兩點(diǎn)作y軸,x軸的垂線,垂足為E,F(xiàn),連接CF,DE.有下列四個(gè)結(jié)論:

①△CEF與△DEF的面積相等;

②△AOB∽△FOE;

③△DCE≌△CDF;

④AC=BD.

其中正確的結(jié)論是( 。

A. ①② B. ①②③ C. ①②③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A、B、C是同一直線上的三個(gè)點(diǎn),若AB=8cm,BC=3cm,則AC= cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一邊長是6,另一邊長是12,則周長是(  )

A. 24 B. 30 C. 2430 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對知識拓展,體育特長、藝術(shù)特長和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中信息,解答下列問題:

(1)求扇形統(tǒng)計(jì)圖中m的值;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該校有800名學(xué)生,計(jì)劃開設(shè)“實(shí)踐活動(dòng)類”課程每班安排20人,問學(xué)校開設(shè)多少個(gè)“實(shí)踐活動(dòng)類”課程的班級比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(﹣2)×3的結(jié)果是(
A.6
B.﹣6
C.1
D.﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,最適宜采用普查方式的是(  )

A.對全國初中學(xué)生視力狀況的調(diào)査

B.對“十一國慶”期間全國居民旅游出行方式的調(diào)查

C.旅客上飛機(jī)前的安全檢查

D.了解某種品牌手機(jī)電池的使用壽命

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:3x2﹣(x﹣2)2=12.

查看答案和解析>>

同步練習(xí)冊答案