對于形如x2+2x+1這樣的二次三項式,可以用公式法將它分解成(x+1)2的形式,但對于二次三項式x2+2x-3,就不能直接運用公式了.此時,我們可以在二次三項式x2+2x-3中先加上1使它與x2+2x的和成為一個完全平方式,再減去1,整個式子的值不變,于是有:
x2+2x-3=(x2+2x+1)-1-3
=(x+1)2-22
=(x+1+2)(x+1-2)
=(x+3)(x-1)
像這樣,先添一適當(dāng)項,使式子出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.利用“配方法”分解因式:(1)a2-8a+12;(2)a2+4ab+3b2
分析:(1)根據(jù)配方法的步驟,將原式變形為a2-8a+12=(a-4)2-22,再利用平方差公式求出即可;
(2)根據(jù)配方法的步驟,將原式變形為a2+4ab+3b2.=(a+2b)2-b2,再利用平方差公式求出即可;
解答:解:(1)a2-8a+12
=a2-8a+16-16+12
=(a-4)2-22
=(a-4+2)(a-4-2)
=(a-2)(a-6);

(2)a2+4ab+3b2
=a2+4ab+(2b)2+3b2-(2b)2
=(a+2b)2-b2
=(a+2b+b)(a+2b-b)
=(a+3b)(a+b).
點評:本題考查了配方法的應(yīng)用和因式分解--十字相乘法.此題考查了學(xué)生的應(yīng)用能力,解題時要注意配方法的步驟.注意在變形的過程中不要改變式子的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

對于形如x2+2x+1這樣的二次三項式,可以用公式法將它分解成(x+1)2的形式.但對于二次三項式x2+2x-3,就不能直接運用公式了.此時,我們可以在二次三項式x2+2x-3中先加上一項1,使它與x2+2x的和成為一個完全平方式,再減去1,整個式子的值不變,于是有:x2+2x-3=(x2+2x+1)-1-3=(x+1)2-22=(x+3)(x-1).
像這樣,先添一適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
請利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

對于形如x2+2x+1這樣的二次三項式,可以用公式法將它分解成(x+1)2的形式.但對于二次三項式x2+2x-3,就不能直接運用公式了.此時,我們可以在二次三項式x2+2x-3中先加上一項1,使它與x2+2x的和成為一個完全平方式,再減去1,整個式子的值不變,于是有:x2+2x-3=(x2+2x+1)-1-3=(x+1)2-22=(x+3)(x-1).
像這樣,先添一適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
請利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

對于形如x2+2x+1這樣的二次三項式,可以用公式法將它分解成(x+1)2的形式,但對于二次三項式x2+2x-3,就不能直接運用公式了.此時,我們可以在二次三項式x2+2x-3中先加上1使它與x2+2x的和成為一個完全平方式,再減去1,整個式子的值不變,于是有:
x2+2x-3=(x2+2x+1)-1-3
=(x+1)2-22
=(x+1+2)(x+1-2)
=(x+3)(x-1)
像這樣,先添一適當(dāng)項,使式子出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.利用“配方法”分解因式:(1)a2-8a+12;(2)a2+4ab+3b2

查看答案和解析>>

同步練習(xí)冊答案