如圖,△ABC為⊙O的內(nèi)接三角形,AB=1,∠C=30°,則⊙O的內(nèi)接正方形的面積為( )

A.2
B.4
C.8
D.16
【答案】分析:連接BO并延長交圓于點(diǎn)E,連接AE,根據(jù)三角函數(shù)可求得BE的長;再根據(jù)圓內(nèi)接正方形的性質(zhì)求得其邊長,從而可得到其面積.
解答:解:如圖,連接BO并延長交圓于點(diǎn)E,連接AE,則∠E=∠C=30°,∠EAB=90°;
∴直徑BE==2
∴圓內(nèi)接正方形的邊長等于
∴⊙O的內(nèi)接正方形的面積為2.
故選A.
點(diǎn)評(píng):本題利用了圓周角定理和直徑對(duì)的圓周角是直角、圓內(nèi)接正方形的性質(zhì)和正弦的概念求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊三角形,其邊長為6,試把它剪成兩個(gè)全等的直角三角形.用這兩個(gè)全等的直角三角形拼成幾精英家教網(wǎng)種不同的平行四邊形,并計(jì)算其中一種平行四邊形的對(duì)角線的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,△ABC為⊙O的內(nèi)接三角形,AB是直徑,∠A=20°,則∠B的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC為等邊三角形,D、F分別為BC、AB上的點(diǎn),且CD=BF,以AD為邊作等邊△ADE.
(1)求證:△ACD≌△CBF;
(2)點(diǎn)D在線段BC上何處時(shí),四邊形CDEF是平行四邊形且∠DEF=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,△ABC為等邊三角形,又DE⊥BC,EF⊥AC,F(xiàn)D⊥AB,垂足分別為E,F(xiàn),D,則△DEF是等邊三角形嗎?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,△ABC為等邊三角形,D為BC上一點(diǎn),∠ADE=60°,DE交∠ACB外角平分線于E.
(1)AB與CE平行嗎?請(qǐng)說明理由.
(2)請(qǐng)說明∠BAD=∠EDC的理由.

查看答案和解析>>

同步練習(xí)冊答案