精英家教網 > 初中數學 > 題目詳情
(2010•鎮(zhèn)江)如圖,已知△ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,過D作DE⊥BC,垂足為E,連接OE,CD=,∠ACB=30°.
(1)求證:DE是⊙O的切線;
(2)分別求AB,OE的長;
(3)填空:如果以點E為圓心,r為半徑的圓上總存在不同的兩點到點O的距離為1,則r的取值范圍為______
【答案】分析:(1)要證明DE是⊙O的切線,已知OD是圓的半徑,只要證明OD⊥DE即可.
(2)根據勾股定理可求得BC的長,從而可求得AB,DE的長,再根據勾股定理即可求得OE的長.
(3)由第二問可知OE的長,根據題意不難求得圓E的半徑r的取值范圍.
解答:(1)證明:連接BD、OD,
∵AB是直徑,
∴∠ADB=90°,
又∵AB=BC,
∴AD=CD.
∵AO=BO,
∴OD是△ABC的中位線,
∴OD∥BC.
∵DE⊥BC,
∴OD⊥DE,
∴DE是⊙O的切線.

(2)解:在Rt△CBD中,CD=,∠ACB=30°
∴BC==2,
∴BD=1,AB=2,
在Rt△CDE中,CD=,∠ACB=30°
∴DE=CD=,BC==2
∵OD是圓O半徑,
∴OD=1,
∴OE==

(3)解:如圖,
當圓E的半徑為-1時,OG=1;
當圓E的半徑為+1時,OG=1,

點評:此題主要考查學生對切線的判定及勾股定理等知識點的綜合運用能力.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《四邊形》(09)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內,點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當點B位置變化時,Rt△OAB的面積恒為
試解決下列問題:
(1)點D坐標為( );
(2)設點B橫坐標為t,請把BD長表示成關于t的函數關系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設CM與AB相交于F,當△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《三角形》(14)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內,點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當點B位置變化時,Rt△OAB的面積恒為
試解決下列問題:
(1)點D坐標為( );
(2)設點B橫坐標為t,請把BD長表示成關于t的函數關系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設CM與AB相交于F,當△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《一次函數》(07)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內,點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當點B位置變化時,Rt△OAB的面積恒為
試解決下列問題:
(1)點D坐標為( );
(2)設點B橫坐標為t,請把BD長表示成關于t的函數關系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設CM與AB相交于F,當△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內,點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當點B位置變化時,Rt△OAB的面積恒為
試解決下列問題:
(1)點D坐標為( );
(2)設點B橫坐標為t,請把BD長表示成關于t的函數關系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設CM與AB相交于F,當△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省鎮(zhèn)江市中考數學試卷(解析版) 題型:解答題

(2010•鎮(zhèn)江)如圖,在直角坐標系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內,點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當點B位置變化時,Rt△OAB的面積恒為
試解決下列問題:
(1)點D坐標為( );
(2)設點B橫坐標為t,請把BD長表示成關于t的函數關系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設CM與AB相交于F,當△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結論.

查看答案和解析>>

同步練習冊答案