【題目】在平面坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2),延長CBx軸于點(diǎn)A1,作正方形A1B1C1C,延長C1B1x軸于點(diǎn)A2,作正方形A2B2C2C1,………按這樣的規(guī)律進(jìn)行下去,第2012個(gè)正方形的面積為_____________

【答案】

【解析】因?yàn)辄c(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2),

∴OA=1,OD=2,

設(shè)正方形的面積分別為,,

根據(jù)題意,得:AD∥BC∥,

= =,

,

,

在直角△ADO中,根據(jù)勾股定理,得:AD=,

∴AB=AD=BC=,

=5,

∵∠DAO+∠ADO=90°,∠DAO+=90°,

∴∠ADO=

∴tan=,

=BC+ =,

=×5=5×,

,

,

,

S3=8116×5=5×(32)4,

由此可得: ,

.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)進(jìn)行跳高測(cè)試,每人10次跳高的平均成績(jī)恰好是1.6米,方差分別是S2=1.2,S2=0.5,則在本次測(cè)試中,同學(xué)的成績(jī)更穩(wěn)定(填“甲”或“乙”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式2x﹣1>3的最小整數(shù)解是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算中,正確的是( )

A. x3x3=x6 B. 3x2+2x3=5x5 C. x23=x5 D. ab3=a3b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一平面內(nèi),兩條平行高速公路l1和l2間有一條“Z”型道路連通,其中AB段與高速公路l1成30°角,長為20km;BC段與AB、CD段都垂直,長為10km,CD段長為30km,求兩高速公路間的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知, A、BC、DE是反比例函數(shù)x>0)圖象上五個(gè)整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)),分別以這些點(diǎn)向橫軸或縱軸作垂線段,由垂線段所在的正方形邊長為半徑作四分之一圓周的兩條弧,組成如圖5所示的五個(gè)橄欖形(陰影部分),則這五個(gè)橄欖形的面積總和是 (用含π的代數(shù)式表示)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價(jià)不低于90萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價(jià)(萬元)之間滿足關(guān)系式,月產(chǎn)量x(套)與生產(chǎn)總成本(萬元)存在如圖所示的函數(shù)關(guān)系.

(1)求月產(chǎn)量x的范圍;

(2)如果想要每月利潤為1750萬元,那么當(dāng)月產(chǎn)量應(yīng)為多少套?

(3)如果每月獲利潤不低于1900萬元,當(dāng)月產(chǎn)量x(套)為多少時(shí),生產(chǎn)總成本最低?并求出此時(shí)的最低成本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=2x2向右平移3個(gè)單位,再向下平移5個(gè)單位,得到的拋物線的表達(dá)式為(
A.y=2(x﹣3)2﹣5
B.y=2(x+3)2+5
C.y=2(x﹣3)2+5
D.y=2(x+3)2﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(﹣23÷4﹣(﹣12018×|3|

查看答案和解析>>

同步練習(xí)冊(cè)答案