在平面直角坐標(biāo)系xOy中,關(guān)于y軸對(duì)稱(chēng)的拋物線(xiàn) 與x軸交于A、B 兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,P是這條拋物線(xiàn)上的一點(diǎn)(點(diǎn)P不在坐標(biāo)軸上),且點(diǎn)P關(guān)于直線(xiàn)BC的對(duì)稱(chēng)點(diǎn)在x軸上,D(0,3)是y軸上的一點(diǎn).
(1)求拋物線(xiàn)的解析式及點(diǎn)P的坐標(biāo);
(2)若E、F是 y 軸負(fù)半軸上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E 在點(diǎn)F的上面),且EF=2,當(dāng)四邊形PBEF的周長(zhǎng)最小時(shí),求點(diǎn)E、F的坐標(biāo);
(3)若Q是線(xiàn)段AC上一點(diǎn),且,M是直線(xiàn)DQ上的一個(gè)動(dòng)點(diǎn),在x軸上方的平面內(nèi)存在一點(diǎn)N,使得以 O、D、M、N為頂點(diǎn)的四邊形是菱形,請(qǐng)你直接寫(xiě)出點(diǎn)N的坐標(biāo).
解:(1)∵拋物線(xiàn)關(guān)于y軸對(duì)稱(chēng),
∴m-2=0.
∴m=2.
∴拋物線(xiàn)的解析式是.
令y=0,得.
∴,.
在Rt△中,OC=1, OB=,可得∠OBC=30º.
在Rt△中,OD=3, OB=,可得∠OBD=60º.
∴BC是∠OBD的角平分線(xiàn).
∴直線(xiàn)BD與x軸關(guān)于直線(xiàn)BC對(duì)稱(chēng).
因?yàn)辄c(diǎn)P關(guān)于直線(xiàn)BC的對(duì)稱(chēng)點(diǎn)在x軸上,
則符合條件的點(diǎn)P就是直線(xiàn)BD與拋物線(xiàn) 的交點(diǎn).
設(shè)直線(xiàn)BD的解析式為.
∴ ∴
∴直線(xiàn)BD的解析式為.
∵點(diǎn)P在直線(xiàn)BD上,設(shè)P點(diǎn)坐標(biāo)為.
又因?yàn)辄c(diǎn)P 在拋物線(xiàn)上,
∴.
解得.
∴.
∴點(diǎn)P的坐標(biāo)是.
(2)過(guò)點(diǎn)P作PG⊥ 軸于G,在PG上截取,連結(jié)AH與軸交于點(diǎn),在軸的負(fù)半軸上截取.
∵ PH∥EF,,
∴ 四邊形為平行四邊形,有.
又 ∵ 、的長(zhǎng)為定值,
∴ 此時(shí)得到的點(diǎn)、使四邊形的周長(zhǎng)最小.
∵ OE∥GH,
∴ Rt△∽R(shí)t△.
∴ .
∴ .
∴ .
∴ 點(diǎn)的坐標(biāo)為(0,),點(diǎn)的坐標(biāo)為(0,).
(3)點(diǎn)N的坐標(biāo)是或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com