已知拋物線經過三點A(4,3),B(x1,0),C(x2,0),且x1、x2是方程x2-6x-3數(shù)學公式+17=0的兩根.
(1)求拋物線的解析式;
(2)直線y=2x+h與該拋物線相交于兩點M(m,y1)、N(n,y2),m、n滿足關系式m2+n2=12,求這條直線的解析式.

解:(1)設y=則無理方程變?yōu)閥2-3y-4=0.
解得y=4,y=-1(舍去);
∴4=,化簡得x2-6x+5=0.
∴A、B兩點的坐標為(1,0)和(5,0).
設拋物線的解析式為y=ax2+bx+c.依題意,得:
,
解得
∴所求拋物線的解析式為y=-x2+6x-5.

(2)由題意知:-x2+6x-5=2x+h.
即x2-4x+5+h=0;
∴m+n=4,m•n=5+h;
又m2+n2=12
∴(m+n)2-2mn=12,
即42-2(5+h)=12.
解得h=-3;
當h=-3時,△=(-4)2-4×1×2>0成立.
∴直線的解析式為y=2x-3.
分析:(1)求拋物線解析式的關鍵是確定B、C兩點的坐標,可通過解方程求出x1,x2的值來得出B、C的坐標(可先將無理方程通過去根號轉換為有理方程,然后再進行求解),得出B、C坐標后,可用待定系數(shù)法求出拋物線的解析式.
(2)直線與拋物線有交點,那么可聯(lián)立兩函數(shù)式,可得出一個關于x的一元二次方程,兩函數(shù)交點的橫坐標即為此方程的根,根據一元二次方程根與系數(shù)的關系及m2+n2=12,即可求出拋物線的解析式.
點評:本題主要考查了無理方程的解法、二次函數(shù)解析式的確定、函數(shù)圖象的交點、一元二次方程根與系數(shù)的關系等知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知拋物線經過三點A(4,3),B(x1,0),C(x2,0),且x1、x2是方程x2-6x-3
x2-6x+21
+17=0的兩根.
(1)求拋物線的解析式;
(2)直線y=2x+h與該拋物線相交于兩點M(m,y1)、N(n,y2),m、n滿足關系式m2+n2=12,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:新教材完全解讀 九年級數(shù)學 下冊(配北師大版新課標) 北師大版新課標 題型:022

已知拋物線經過三點A(2,6),B(-1,0),C(3,0),那么這個函數(shù)的解析式為________,它的頂點坐標為________.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•婁底)已知拋物線經過三點A(4,3),B(x1,0),C(x2,0),且x1、x2是方程x2-6x-3+17=0的兩根.
(1)求拋物線的解析式;
(2)直線y=2x+h與該拋物線相交于兩點M(m,y1)、N(n,y2),m、n滿足關系式m2+n2=12,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年湖南省婁底市中考數(shù)學試卷(解析版) 題型:解答題

(2002•婁底)已知拋物線經過三點A(4,3),B(x1,0),C(x2,0),且x1、x2是方程x2-6x-3+17=0的兩根.
(1)求拋物線的解析式;
(2)直線y=2x+h與該拋物線相交于兩點M(m,y1)、N(n,y2),m、n滿足關系式m2+n2=12,求這條直線的解析式.

查看答案和解析>>

同步練習冊答案