【題目】(1)某學校智慧方園數(shù)學社團遇到這樣一個題目:

如圖1,在ABC中,點O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

經(jīng)過社團成員討論發(fā)現(xiàn),過點BBDAC,交AO的延長線于點D,通過構(gòu)造ABD就可以解決問題(如圖2).

請回答:∠ADB=   °,AB=   

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形ABCD中,對角線ACBD相交于點O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的長.

【答案】(1)75;4;(2)CD=4

【解析】(1)根據(jù)平行線的性質(zhì)可得出∠ADB=OAC=75°,結(jié)合∠BOD=COA可得出BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=ADB,由等角對等邊可得出AB=AD=4,此題得解;

(2)過點BBEADAC于點E,同(1)可得出AE=4,在RtAEB中,利用勾股定理可求出BE的長度,再在RtCAD中,利用勾股定理可求出DC的長,此題得解.

1)BDAC,

∴∠ADB=OAC=75°.

∵∠BOD=COA,

∴△BOD∽△COA,

又∵AO=3

OD=AO=,

AD=AO+OD=4

∵∠BAD=30°,ADB=75°,

∴∠ABD=180°-BAD-ADB=75°=ADB,

AB=AD=4

(2)過點BBEADAC于點E,如圖所示.

ACAD,BEAD,

∴∠DAC=BEA=90°.

∵∠AOD=EOB,

∴△AOD∽△EOB,

BO:OD=1:3,

AO=3,

EO=,

AE=4

∵∠ABC=ACB=75°,

∴∠BAC=30°,AB=AC,

AB=2BE.

RtAEB中,BE2+AE2=AB2,即(42+BE2=(2BE)2

解得:BE=4,

AB=AC=8,AD=12.

RtCAD中,AC2+AD2=CD2,即82+122=CD2,

解得:CD=4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于O,且ABO的直徑,ODAB,與AC交于點E,∠D=2∠A

(1)求證:CDO的切線;

(2)求證:DEDC;

(3)若OD=5,CD=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,已知ABAC,延長CD至點E,使CEBD,連結(jié)AE

1)求證:AD平分∠BDE;

2)若ABCD,求證:AE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在抗擊新冠肺炎疫情期間,老百姓越來越依賴電商渠道獲取必要的生活資料.小石經(jīng)營的水果店也適時加入了某電商平臺,并對銷售的水果中的部分(如下表)進行促銷:參與促銷的水果免配送費且一次購買水果的總價滿128元減元.每筆訂單顧客網(wǎng)上支付成功后,小石會得到支付款的80%

參與促銷水果

水果

促銷前單價

蘋果

58/

耙耙柑

70/

車厘子

100/

火龍果

48/

1)當時,某顧客一次購買蘋果和車厘子各1箱,需要支付_____元,小石會得到______元;

2)在促銷活動中,為保障小石每筆訂單所得到的金額不低于促銷前總價的七折,則的最大值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,ACE,F兩點,再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,連接AP,交CD于點M,若∠ACD110°,則∠CMA的度數(shù)為( 。

A.30°B.35°C.70°D.45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在三角形紙板中,,,點是邊上的一個點(不與點重合),沿折疊紙板,點的對應點是點

1)如圖2,當點在射線上時,________°.

2)若,且點不在直線右側(cè),則點的距離是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某縣2015年初中畢業(yè)生數(shù)學質(zhì)量檢測成績等級的分布情況,隨機抽取了該縣若干名初中畢業(yè)生的數(shù)學質(zhì)量檢測成績,按A,BC,D四個等級進行統(tǒng)計分析,并繪制了如下尚不完整的統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:

1)本次抽取的學生有   名;補全條形統(tǒng)計圖1;

2)根據(jù)調(diào)查結(jié)果,請估計該縣1430名初中畢業(yè)生數(shù)學質(zhì)量檢測成績?yōu)?/span>A級的人數(shù)是

3)某校A等級中有甲、乙、丙、丁4名學生成績并列第一,現(xiàn)在要從這4位學生中抽取2名學生在校進行學習經(jīng)驗介紹,用列舉法求出恰好選中甲乙兩位學生的概率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了了解本校學生采用何種方式上網(wǎng)查找所需要的學習資源,隨機抽取部分學生了解情況,并將統(tǒng)計結(jié)果繪制成頻數(shù)分布表及頻數(shù)分布直方圖.

1)頻數(shù)分布表中的值:_____________,______________

2)補全頻數(shù)分布直方圖;

3)若全校有1000名學生,估計該校利用搜索引擎上網(wǎng)查找學習資源的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,直線EF分別交直線AB、CD于點G、H,GI、HI分別平分∠BGH、∠GHD

1)求證GIHI

2)請用文字概括(1)所證明的命題:   

查看答案和解析>>

同步練習冊答案