如圖,拋物線(a≠0)經(jīng)過點(diǎn)A(﹣3,0)、B(1,0)、C(﹣2,1),交y軸于點(diǎn)M.
(1)求拋物線的表達(dá)式;
(2)D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長度的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)P、A、N為頂點(diǎn)的三角形與△MAO相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(1)
(2)點(diǎn)D的坐標(biāo)為
(3)滿足條件的點(diǎn)P的坐標(biāo)為(﹣8,﹣15)、(2,)、(10,﹣39)。
解析分析:(1)把點(diǎn)A、B、C的坐標(biāo)分別代入已知拋物線的解析式列出關(guān)于系數(shù)的三元一次方程組,通過解該方程組即可求得系數(shù)的值。
(2)由(1)中的拋物線解析式易求點(diǎn)M的坐標(biāo)為(0,1).所以利用待定系數(shù)法即可求得直線AM的關(guān)系式為。由題意設(shè)點(diǎn)D的坐標(biāo)為,則點(diǎn)F的坐標(biāo)為,易求DF關(guān)于的函數(shù)表達(dá)式,根據(jù)二次函數(shù)最值原理來求線段DF的最大值。
(3)對點(diǎn)P的位置進(jìn)行分類討論:點(diǎn)P分別位于第一、二、三、四象限四種情況。利用相似三角形的對應(yīng)邊成比例進(jìn)行解答。
解:(1)把A(﹣3,0)、B(1,0)、C(﹣2,1)代入得,
.解得。
∴拋物線的表達(dá)式為。
(2)將x=0代入拋物線表達(dá)式,得y=1.∴點(diǎn)M的坐標(biāo)為(0,1)。
設(shè)直線MA的表達(dá)式為y=kx+b,
則,解得。
∴直線MA的表達(dá)式為。
設(shè)點(diǎn)D的坐標(biāo)為,
則點(diǎn)F的坐標(biāo)為。
∴。
∴當(dāng)時(shí),DF的最大值為。
此時(shí),即點(diǎn)D的坐標(biāo)為。
(3)存在點(diǎn)P,使得以點(diǎn)P、A、N為頂點(diǎn)的三角形與△MAO相似。
設(shè)P,
在Rt△MAO中,AO=3MO,要使兩個(gè)三角形相似,由題意可知,點(diǎn)P不可能在第一象限。
①設(shè)點(diǎn)P在第二象限時(shí),∵點(diǎn)P不可能在直線MN上,∴只能PN=3NM。
∴,即,
解得m=﹣3或m=﹣8。
∵此時(shí)﹣3<m<0,∴此時(shí)滿足條件的點(diǎn)不存在。
②當(dāng)點(diǎn)P在第三象限時(shí),
∵點(diǎn)P不可能在直線MN上,∴只能PN=3NM。
∴,即,
解得m=﹣3(舍去)或m=﹣8。
當(dāng)m=﹣8時(shí),,∴此時(shí)點(diǎn)P的坐標(biāo)為(﹣8,﹣15)。
③當(dāng)點(diǎn)P在第四象限時(shí),
若AN=3PN時(shí),則,
即m2+m﹣6=0。
解得m=﹣3(舍去)或m=2。
當(dāng)m=2時(shí),,
∴此時(shí)點(diǎn)P的坐標(biāo)為(2,)。
若PN=3NA,則,即m2﹣7m﹣30=0。
解得m=﹣3(舍去)或m=10。
當(dāng)m=10時(shí),,∴此時(shí)點(diǎn)P的坐標(biāo)為(10,﹣39)。
綜上所述,滿足條件的點(diǎn)P的坐標(biāo)為(﹣8,﹣15)、(2,)、(10,﹣39)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,二次函數(shù)的圖象與x軸相交于點(diǎn)A(﹣3,0)、B(﹣1,0),與y軸相交于點(diǎn)C(0,3),點(diǎn)P是該圖象上的動(dòng)點(diǎn);一次函數(shù)y=kx﹣4k(k≠0)的圖象過點(diǎn)P交x軸于點(diǎn)Q.
(1)求該二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(﹣4,m)時(shí),求證:∠OPC=∠AQC;
(3)點(diǎn)M,N分別在線段AQ、CQ上,點(diǎn)M以每秒3個(gè)單位長度的速度從點(diǎn)A向點(diǎn)Q運(yùn)動(dòng),同時(shí),點(diǎn)N以每秒1個(gè)單位長度的速度從點(diǎn)C向點(diǎn)Q運(yùn)動(dòng),當(dāng)點(diǎn)M,N中有一點(diǎn)到達(dá)Q點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接AN,當(dāng)△AMN的面積最大時(shí),
①求t的值;
②直線PQ能否垂直平分線段MN?若能,請求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=a(x﹣h)2+k經(jīng)過點(diǎn)A(0,1),且頂點(diǎn)坐標(biāo)為B(1,2),它的對稱軸與x軸交于點(diǎn)C.
(1)求此拋物線的解析式.
(2)在第一象限內(nèi)的拋物線上求點(diǎn)P,使得△ACP是以AC為底的等腰三角形,請求出此時(shí)點(diǎn)P的坐標(biāo).
(3)上述點(diǎn)是否是第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)?若是,請說明理由;若不是,請求出第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:y=y1+y2,y1與x2成正比例,y2與x成反比例,且x=1時(shí),y=3;x=﹣1時(shí),y=1.求x=﹣ 時(shí),y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線x=-4與x軸交于點(diǎn)E,一開口向上的拋物線過原點(diǎn)交線段OE于點(diǎn)A,交直線x=-4于點(diǎn)B,過B且平行于x軸的直線與拋物線交于點(diǎn)C,直線OC交直線AB于D,且AD:BD=1:3.
(1)求點(diǎn)A的坐標(biāo);
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(4,0),B點(diǎn)坐標(biāo)為(﹣1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P的正半軸交于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線所對應(yīng)的函數(shù)解析式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),求直線MC對應(yīng)的函數(shù)解析式;
(3)試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線過點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過第三象限。
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說明理由;
(3)若直線經(jīng)過點(diǎn)B,且于該拋物線交于另一點(diǎn)C(),求當(dāng)x≥1時(shí)y1的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
反比例函數(shù)的圖象如圖所示,則這個(gè)反比例函數(shù)的解析式可能是( )
A.y= | B.y= | C.y= | D.y= |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
已知反比例函數(shù),當(dāng)時(shí),隨的增大而增大,則關(guān)于的方程的根的情況是( )
A.有兩個(gè)正根 | B.有兩個(gè)負(fù)根 |
C.有一個(gè)正根一個(gè)負(fù)根 | D.沒有實(shí)數(shù)根 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com