如圖,在△ABC中,∠BAC=75°,AD、BE分別是BC、AC邊上的高,AD=BD,求∠C和∠AFB的度數(shù).

解:(1)在△ABC中,AD、BE分別是BC、AC邊上的高,
∴∠ADB=∠ADC=∠BEC=90°.
∵AD=BD,
∴∠ABD=∠BAD=45°.
在△ABC中,∠BAC=75°,
∴∠C=180°-(∠ABD+∠BAC)
=180°-(45°+75°)=60°.

(2)在四邊形DCEF中,
∵∠DFE=360°-(∠ADC+∠BEC+∠C)=360°-(90°+90°+60°)=120°.
∴∠AFB=∠DFE=120°.
分析:(1)首先計算出∠ABD=∠BAD=45°,再根據(jù)三角形內(nèi)角和定理計算出∠C的度數(shù)即可;
(2)利用四邊形內(nèi)角和為360度可以算出∠DFE,然后再根據(jù)對頂角相等計算出∠AFB的度數(shù)即可.
點評:此題主要考查了多邊形內(nèi)角和定理,以及三角形內(nèi)角和,關鍵是掌握四邊形內(nèi)角和為360°,三角形內(nèi)角和為180°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案