如圖所示是函數(shù)y=+5的一部分圖象,利用圖象回答:
(1)自變量的取值范圍.
(2)當(dāng)x取什么值時,y取最小值?最小值為多少?
(3)在(1)中x的取值范圍內(nèi),y隨x的增大而怎樣變化?
科目:初中數(shù)學(xué) 來源:黃岡重點作業(yè) 初三數(shù)學(xué)(下) 題型:022
如圖所示是一次函數(shù)y=kx+b的圖像,則y關(guān)于x的函數(shù)關(guān)系式為________,y隨x的增大而________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(10分)國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于90萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關(guān)系式y(tǒng)1=170-2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.
(1)直接寫出y2與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的范圍;
(3)當(dāng)月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于90萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關(guān)系式y(tǒng)1=170-2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.
1.直接寫出y2與x之間的函數(shù)關(guān)系式
2.求月產(chǎn)量x的范圍
3.當(dāng)月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤W(萬元)最大?最大利潤是多少
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011年山東肥城馬埠中學(xué)初三模擬試題一數(shù)學(xué)卷 題型:解答題
(10分)國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于90萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關(guān)系式y(tǒng)1=170-2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.
(1)直接寫出y2與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的范圍;
(3)當(dāng)月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com