【題目】某初中學(xué)校欲向高一級(jí)學(xué)校推薦一名學(xué)生,根據(jù)規(guī)定的推薦程序:首先由本年級(jí)200名學(xué)生民主投票,每人只能推薦一人(不設(shè)棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計(jì)如圖一:
其次,對(duì)三名候選人進(jìn)行了筆試和面試兩項(xiàng)測(cè)試.各項(xiàng)成績(jī)?nèi)缦卤硭荆?/span>
測(cè)試項(xiàng)目 | 測(cè)試成績(jī)/分 | ||
甲 | 乙 | 丙 | |
筆試 | 92 | 90 | 95 |
面試 | 85 | 95 | 80 |
圖二是某同學(xué)根據(jù)上表繪制的一個(gè)不完全的條形圖.
請(qǐng)你根據(jù)以上信息解答下列問題:
(1)補(bǔ)全圖一和圖二;
(2)請(qǐng)計(jì)算每名候選人的得票數(shù);
(3)若每名候選人得一票記1分,投票、筆試、面試三項(xiàng)得分按照2:5:3的比確定,計(jì)算三名候選人的平均成績(jī),成績(jī)高的將被錄取,應(yīng)該錄取誰?
【答案】(1)見解析;(2)甲68票,乙60票,丙56;(3)應(yīng)該錄取乙.
【解析】
(1)根據(jù)扇形統(tǒng)計(jì)圖及統(tǒng)計(jì)表中的數(shù)據(jù)特征求解即可;
(2)用200乘以扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的百分比即可求得結(jié)果;
(3)先根據(jù)加權(quán)平均數(shù)的計(jì)算公式求得三名候選人的平均成績(jī),再比較即可作出判斷.
(1)
(2)甲的票數(shù)是:(票)
乙的票數(shù)是:(票)
丙的票數(shù)是:(票);
(3)甲的平均成績(jī)
乙的平均成績(jī)
丙的平均成績(jī)
∵乙的平均成績(jī)最高
∴應(yīng)該錄取乙.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,二次函數(shù)y=ax2+2ax﹣3a(a≠0)圖象的頂點(diǎn)為C與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C、B關(guān)于過點(diǎn)A的直線l:y=kx+對(duì)稱.
(1)求A、B兩點(diǎn)坐標(biāo)及直線l的解析式;
(2)求二次函數(shù)解析式;
(3)如圖2,過點(diǎn)B作直線BD∥AC交直線l于D點(diǎn),M、N分別為直線AC和直線l上的兩個(gè)動(dòng)點(diǎn),連接CN,MM、MD,求CN+NM+MD的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCO是平行四邊形,OA=1,AB=3,點(diǎn)C在x軸的負(fù)半軸上,將平行四邊形ABCO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到平行四邊形ADEF,AD經(jīng)過點(diǎn)O,點(diǎn)F恰好落在x軸的正半軸上,則D點(diǎn)的坐標(biāo)為( )
A.(1,)B.(﹣1,﹣)C.(,1)D.(﹣,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和的半徑為1和3,連接,交于點(diǎn),,若將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn),則與共相切_______次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象過A(2,0),B(0,﹣1)和C(4,5)三點(diǎn).
(1)求二次函數(shù)的解析式;
(2)設(shè)二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)該拋物線的對(duì)稱軸是直線___________,
(2)求拋物線的解析式;
(3)設(shè)拋物線的頂點(diǎn)為D,在其對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點(diǎn)A(3,0),交y軸于B,D是頂點(diǎn),求△ABD的面積.
(3)在(2)的條件下,根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:點(diǎn)A、B、C、D為⊙O上的四等分點(diǎn),動(dòng)點(diǎn)P從圓心O出發(fā),沿O﹣C﹣D﹣O的路線做勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,∠APB的度數(shù)為y.則下列圖象中表示y與t之間函數(shù)關(guān)系最恰當(dāng)?shù)氖牵ā 。?/span>
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC邊的中點(diǎn).將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<180°),得到△AB′C′(如圖②).
(1)探究DB′與EC′的數(shù)量關(guān)系,并給予證明;
(2)當(dāng)DB′∥AE時(shí),求此時(shí)旋轉(zhuǎn)角α的度數(shù);
(3)如圖③,在旋轉(zhuǎn)過程中,設(shè)AC′與DE所在直線交于點(diǎn)P,當(dāng)△ADP成為等腰三角形時(shí),求此時(shí)的旋轉(zhuǎn)角α的度數(shù).(直接寫出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com