已知二次函數(shù)y=x2-8x+15的圖象與x軸交于A、B兩點(diǎn),點(diǎn)C在該拋物線上移動(dòng),若△ABC的面積為1,求此時(shí)點(diǎn)C的坐標(biāo).

解:解方程x2-8x+15=0得:x1=3,x2=5,
∴A點(diǎn)坐標(biāo)為(3,0),B點(diǎn)坐標(biāo)為(5,0).
∴線段AB的長(zhǎng)為2,
設(shè)C點(diǎn)坐標(biāo)為(m,n).由題意知AB•|n|=1.
∵AB=2,
∴n=±1.
在二次函數(shù)關(guān)系式y(tǒng)=x2-8x+15中,令y=1解得:x1=4+,x2=4-
令y=-1解得:x3=x4=4,
綜上可知C點(diǎn)坐標(biāo)為(4+,1),(4-,1),(4,-1).
分析:首先解方程x2-8x+15=0可求出A和B的坐標(biāo),進(jìn)而得到AB的長(zhǎng),因?yàn)椤鰽BC的面積為1,設(shè)C點(diǎn)坐標(biāo)為(m,n).所以看可求出n的值,進(jìn)而得到點(diǎn)C的坐標(biāo).
點(diǎn)評(píng):本題考查了求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo),令y=0,即ax2+bx+c=0,解關(guān)于x的一元二次方程即可求得交點(diǎn)橫坐標(biāo)和二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點(diǎn)與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點(diǎn)個(gè)數(shù).△=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);
△=b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知二次函數(shù)y=x2+mx+m-5,
(1)求證:不論m取何值時(shí),拋物線總與x軸有兩個(gè)交點(diǎn);
(2)求當(dāng)m取何值時(shí),拋物線與x軸兩交點(diǎn)之間的距離最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=x2+(2a+1)x+a2-1的最小值為0,則a的值是( 。
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=-x2+2x+m的部分圖象如圖所示,則關(guān)于x的一元二次方程-x2+2x+m=0的解為( 。
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知二次函數(shù)y1=x2-x-2和一次函數(shù)y2=x+1的兩個(gè)交點(diǎn)分別為A(-1,0),B(3,4),當(dāng)y1>y2時(shí),自變量x的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),與y軸的交點(diǎn)坐標(biāo)為(0,3).
(1)試求二次函數(shù)的解析式;
(2)求y的最大值;
(3)寫(xiě)出當(dāng)y>0時(shí),x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案