【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45

1)求一次函數(shù)y=kx+b的表達式;

2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

【答案】(1)y=-x+120;(2)當售價定為87元時,商場可獲得最大利潤,最大利潤是891元.

【解析】試題分析:1)先用待定系數(shù)法求出yx之間的一次函數(shù)關(guān)系式,然后根據(jù)利潤=銷售量×(銷售單價-成本)得到Wx之間的函數(shù)關(guān)系式;

(2)利用二次函數(shù)的性質(zhì),求出商場獲得的最大利潤以及獲得最大利潤時的售價.

解:(1)根據(jù)題意得

解得

所求一次函數(shù)的表達式為y=-x+120.

(2)w=(x-60)(-x+120)

=-x2+180x-7200

=-(x-90)2+900,

∵拋物線的開口向下,

∴當x<90時,wx的增大而增大,

60≤x≤87,

∴當x=87時,w═-(87-90)2+900=891.

∴當銷售單價定為87元時,商場可獲得最大利潤,最大利潤是891元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為1的小圓與半徑為2的大圓,有一個公共點與數(shù)軸上的原點重合,兩圓在數(shù)軸上做無滑動的滾動,小圓的運動速度為每秒π個單位,大圓的運動速度為每秒個單位,(1)若小圓不動,大圓沿數(shù)軸來回滾動,規(guī)定大圓向右滾動的時間記為正數(shù),向左滾動時間即為負數(shù),依次滾動的情況錄如下(單位:秒):﹣1,+2,﹣4,﹣2,+3+6

(1)第    次滾動后,大圓與數(shù)軸的公共點到原點的距離最遠;

(2)當大圓結(jié)束運動時,大圓運動的路程共有多少?此時兩圓與數(shù)軸重合的點之間的距離是多少?(結(jié)果保留π

3)若兩圓同時在數(shù)軸上各自沿著某一方向連續(xù)滾動,滾動一段時間后兩圓與數(shù)軸重合的點之間相距,求此時兩圓與數(shù)軸重合的點所表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于有理數(shù),定義一種新運算,請仔細觀察下列各式中的運算規(guī)律:12==2,

,

回答下列問題:

(1)計算:=_____;=_____.

(2)a≠b,則_____(填入

(3)若有理數(shù)a,b的取值范圍在數(shù)軸上的對應點如圖所示,且,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)(-8)+10-2+(-1); (2)12-7×(-4)+8÷(-2);

(3)()÷(-); (4)-14-(1+0.5)×÷(-4)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打第一場比賽.

(1)確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.

(2)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在等腰△ABC中,AB=AC=,BC=4,點DA出發(fā)以每秒個單位的速度向點B運動,同時點E從點B出發(fā)以每秒4個單位的速度向點C運動,在DE的右側(cè)作∠DEF=∠B,交直線AC于點F,設運動的時間為t秒,則當△ADF是一個以AD為腰的等腰三角形時,t的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列一段文字,再解答問題
已知在平面內(nèi)有兩點,,其兩點間的距離公式為,同時,當兩點所在的直線在坐標軸上或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可簡化為
已知點,,試求AB兩點間的距離;
已知點A,B在平行于y軸的直線上,點A的縱坐標為5,點B的縱坐標為,試求A,B兩點間的距離;
已知點,,判斷線段AB,BC,AC中哪兩條是相等的?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為使學生及時穿上合身的校服,現(xiàn)提前對該校八年級四班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為 6 個型號)

根據(jù)以上信息,解答下列問題(請寫出每個空所需的求解步驟)

1)該班共有多少名學生?其中穿 175 型號校服的學生有多少?

2)在條形統(tǒng)計圖中,請把空缺部分補充完整;(提醒:有兩處需要補充)

3)在扇形統(tǒng)計圖中,185 型校服所對應的扇形圓心角的大小是 度;

4)該班學生所穿校服型號的眾數(shù)是 型,中位數(shù)是 型。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校辦公樓前有一長為,寬為的長方形空地,在中心位置留出一個半徑為的圓形區(qū)域建一個噴泉,兩邊是兩塊長方形的休息區(qū),陰影部分為綠地.

1)用含字母和的式子表示陰影部分的面積;

2)當=4=3,=1,=2時,陰影部分面積是多少?(3

查看答案和解析>>

同步練習冊答案