【題目】如圖,已知△AOB和△A1OB1是以點O為位似中心的位似圖形,且△AOB和△A1OB1的周長之比為12,點B的坐標(biāo)為(-1,2),則點B1的坐標(biāo)為( 。

A. B. C. D.

【答案】A

【解析】

BBCy軸于C,過B1B1Dy軸于D,依據(jù)△AOB和△A1OB1相似,且周長之比為12,即可得到,再根據(jù)△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,進而得出點B1的坐標(biāo)為(2-4).

解:如圖,過BBCy軸于C,過B1B1Dy軸于D,

∵點B的坐標(biāo)為(-12),

BC=1OC=2,

∵△AOB和△A1OB1相似,且周長之比為12,

∵∠BCO=B1DO=90°,∠BOC=B1OD,

∴△BOC∽△B1OD

OD=2OC=4,B1D=2BC=2

∴點B1的坐標(biāo)為(2,-4),

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的四個頂點分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.

探究一:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設(shè)存在正方形EFGH,它的面積是正方形ABCD的2倍.

因為正方形ABCD的面積為1,則正方形EFGH的面積為2,

所以EF=FG=GH=HE=,設(shè)EB=x,則BF=﹣x,

∵Rt△AEB≌Rt△BFC

∴BF=AE=﹣x

在Rt△AEB中,由勾股定理,得

x2+(﹣x)2=12

解得,x1=x2=

∴BE=BF,即點B是EF的中點.

同理,點C,D,A分別是FG,GH,HE的中點.

所以,存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍

探究二:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過程)

探究三:巳知邊長為1的正方形ABCD,   一個外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)

探究四:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ly=-2x-8分別與x軸,y軸相交于A,B兩點,點P0,k)是y軸的負(fù)半軸上的一個動點,以P為圓心,3為半徑作⊙P

1)若⊙Px軸有公共點,則k的取值范圍是______

2)連接PA,若PA=PB,試判斷⊙Px軸的位置關(guān)系,并說明理由;

3)當(dāng)⊙P與直線l相切時,k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市某中學(xué)積極響應(yīng)創(chuàng)建全國文明城市活動,舉辦了以“校園文明”為主題的手抄報比賽.所有參賽作品均獲獎,獎項分為一等獎、二等獎、三等獎和優(yōu)秀獎,將獲獎結(jié)果繪制成如右兩幅統(tǒng)計圖.請你根據(jù)圖中所給信息解答意)

1)等獎所占的百分比是________;三等獎的人數(shù)是________人;

2)據(jù)統(tǒng)計,在獲得一等獎的學(xué)生中,男生與女生的人數(shù)比為,學(xué)校計劃選派1名男生和1名女生參加市手抄報比賽,請求出所選2位同學(xué)恰是1名男生和1名女生的概率;

3)學(xué)校計劃從獲得二等獎的同學(xué)中選取一部分人進行集訓(xùn)使其提升為一等獎,要使獲得一等獎的人數(shù)不少于二等獎人數(shù)的2倍,那么至少選取多少人進行集訓(xùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解七年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5﹣46.5;B:46.5﹣53.5;C:53.5﹣60.5;D:60.5﹣67.5;E:67.5﹣74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

請解答下列問題:

(1)這次隨機抽取了   名學(xué)生調(diào)查,并補全頻數(shù)分布直方圖;

(2)在抽取調(diào)查的若干名學(xué)生中體重在   組的人數(shù)最多,在扇形統(tǒng)計圖中D組的圓心角是   度;

(3)請你估計該校七年級體重超過60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是對角線BD上的一點,過點CCFDB,且CF=DE,連接AE,BFEF

1)求證:△ADE≌△BCF;

2)若∠ABE+BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探索發(fā)現(xiàn))

如圖,是等邊三角形,點邊上一個動點,將繞點逆時針旋轉(zhuǎn)得到,連接.小明在探索這個問題時發(fā)現(xiàn)四邊形是菱形.

小明是這樣想的:

1)請參考小明的思路寫出證明過程;

2)直接寫出線段,,之間的數(shù)量關(guān)系:______________;

(理解運用)

如圖,在中,于點.繞點逆時針旋轉(zhuǎn)得到,延長,交于點.

3)判斷四邊形的形狀,并說明理由;

(拓展遷移)

4)在(3)的前提下,如圖,將沿折疊得到,連接,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:我們知道,在四邊形ABCD中,當(dāng)對角線,若,時,

1)則四邊形ABCD的面積為 ;

小凱遇到一個問題:如圖1,在四邊形ABCD中,對角線AC、BD相交于點O,,,,求四邊形ABCD的面積。

小凱發(fā)現(xiàn),如圖2分別過點A、C作直線BD的垂線,垂足分別為點E,F,設(shè)AOm,通過計算的面積和使問題得以解決。

請回答:

2的面積為 (用含m的式子表示)

3)求四邊形ABCD的面積。

參考小凱思考問題的方法,解決問題:如圖3,在四邊形ABCD中,對角線ACBD相交于點O,,,),則四邊形ABCD的面積為 (用含a,b,的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,以為斜邊作等腰直角三角形,且點與點在直線的兩側(cè),連接

1)如圖1,若,則的度數(shù)為______.

   

2)已知,.

①依題意將圖2補全;

②求的長;

小聰通過觀察、實驗、提出猜想,與同學(xué)們進行交流,通過討論,形成了求長的幾種想法:

想法1:延長,在延長線上截取,連接.要求的長,需證明,為等腰直角三角形.

想法2:過點于點,交的延長線于點,要求的長,需證明,為等腰直角三角形.

……

請參考上面的想法,幫助小聰求出的長(一種方法即可).

3)用等式表示線段,,之間的數(shù)量關(guān)系(直接寫出即可).

查看答案和解析>>

同步練習(xí)冊答案