某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水.連噴頭在內(nèi),柱高0.8m.水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.
精英家教網(wǎng)
根據(jù)設(shè)計(jì)圖紙已知:如圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=-x2+2x+
45

(1)噴出的水流距水面的最大高度是多少?
(2)如果不計(jì)其他因素,那么水池半徑至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)?
(3)若水流噴出的拋物線形狀與(2)相同,噴頭距水面0.35米,水池的面積為12.25π平方米,要使水流最遠(yuǎn)落點(diǎn)恰好落到水池邊緣,此時(shí)水流最大高度達(dá)到多少米?
分析:本題是二次函數(shù)在實(shí)際問(wèn)題中的運(yùn)用,y表示水流噴出的高度,x表示水平距離,是二次函數(shù)關(guān)系,可以利用二次函數(shù)的性質(zhì)解題.在求另外一個(gè)二次函數(shù)關(guān)系式時(shí),確定函數(shù)關(guān)系式要充分運(yùn)用條件“水流噴出的拋物線形狀與(2)相同,噴頭距水面0.35米”,求解析式.
解答:解:(1)y=-x2+2x+
4
5
=-(x-1)2+1.8
答:噴出的水流距水面的最大高度為1.8米

(2)當(dāng)y=0時(shí)-x2+2x+
4
5
=0,
即(x-1)2=1.8,
解得x1=1+
3
5
5
,x2=1-
3
5
5
<0(舍去)
答:水池半徑至少為(1+
3
5
5
)米.

(3)根據(jù)S=πr2,得12.25π=πr2,
∴r=3.5m
設(shè)拋物線解析式為y=-x2+bx+0.35(0≤x≤3.5)
把x=3.5,y=0代入,
得0=-3.52+3.5b+0.35
解得b=3.4
∴y=-x2+3.4x+0.35,
即當(dāng)x=1.7時(shí),y最大=3.24
答:水流最大高度為3.24米.
點(diǎn)評(píng):本題考查二次函數(shù)的實(shí)際應(yīng)用,根據(jù)實(shí)際問(wèn)題求二次函數(shù),再運(yùn)用二次函數(shù)求最大值.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問(wèn)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水,連噴頭在內(nèi),柱高為0.8m,如圖建立直角坐標(biāo)系,水流噴出的高度y(m)與水面距離x(m)之間的函精英家教網(wǎng)數(shù)關(guān)系式為y=-x2+2x+
45

(1)求噴出的水流距水平面的最大高度
 
m.
(2)水池的半徑至少為
 
m才能使噴出的水流都落在水池內(nèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水.連噴頭在內(nèi),柱高0.8m.水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.

根據(jù)設(shè)計(jì)圖紙已知:如圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是數(shù)學(xué)公式
(1)噴出的水流距水面的最大高度是多少?
(2)如果不計(jì)其他因素,那么水池半徑至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)?
(3)若水流噴出的拋物線形狀與(2)相同,噴頭距水面0.35米,水池的面積為12.25π平方米,要使水流最遠(yuǎn)落點(diǎn)恰好落到水池邊緣,此時(shí)水流最大高度達(dá)到多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省荊州市沙市區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•沙市區(qū)二模)某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水.連噴頭在內(nèi),柱高0.8m.水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.

根據(jù)設(shè)計(jì)圖紙已知:如圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是
(1)噴出的水流距水面的最大高度是多少?
(2)如果不計(jì)其他因素,那么水池半徑至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)?
(3)若水流噴出的拋物線形狀與(2)相同,噴頭距水面0.35米,水池的面積為12.25π平方米,要使水流最遠(yuǎn)落點(diǎn)恰好落到水池邊緣,此時(shí)水流最大高度達(dá)到多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水,連噴頭在內(nèi),柱高為0.8m,如圖建立直角坐標(biāo)系,水流噴出的高度y(m)與水面距離x(m)之間的函數(shù)關(guān)系式為y=-x2+2x+數(shù)學(xué)公式
(1)求噴出的水流距水平面的最大高度______m.
(2)水池的半徑至少為_(kāi)_____m才能使噴出的水流都落在水池內(nèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案