如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點O,OP=10cm,射線PN與⊙O相切于點Q.A,B兩點同時從點P出發(fā),點A以5cm/s的速度沿射線PM方向運動,點B以4cm/s的速度沿射線PN方向運動.設(shè)運動時間為ts.

(1)求PQ的長;

(2)當t為何值時,直線AB與⊙O相切?

 

 

 

【答案】

(1)連接OQ,

∵PN與⊙O相切于點Q,∴OQ⊥PN,即∠OQP=90°.

∵OP=10,OQ=6,∴PQ==8(cm).

(2)過點O作OC⊥AB,垂足為C.

∵點A的運動速度為5cm/s,點B的運動速度為4cm/s,運動時間為ts,

∴PA=5t,PB=4t.

∵PO=10,PQ=8,∴.

∵∠P=∠P,∴△PAB∽△POQ.∴∠PBA=∠PQO=90°.

∵∠BQO=∠CBQ=∠OCB=90°,∴四邊形OCBQ為矩形.∴BQ=OC.

∵⊙O的半徑為6,∴BQ=OC=6時,直線AB與⊙O相切.

①當AB運動到如圖1所示的位置,BQ=PQ-PB=8-4t,

∵BQ=6,∴8-4t=6.∴t=0.5(s).

②當AB運動到如圖2所示的位置,BQ=PB﹣PQ=4t-8,

∵BQ=6,∴4t-8=6.∴t=3.5(s).

∴當t為0.5s或3.5s時直線AB與⊙O相切.

【解析】(1)根據(jù)切線的性質(zhì)得∠OQP=90°,在直角△OPQ中根據(jù)勾股定理就可以求出PQ的值;(2)過點O作OC⊥AB,垂足為C.直線AB與⊙O相切,則△PAB∽△POQ,根據(jù)相似三角形的對應(yīng)邊的比相等,就可以求出t的值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點O,OP=10cm,射線PN與⊙O相切于點Q.A,B兩點同時從點精英家教網(wǎng)P出發(fā),點A以5cm/s的速度沿射線PM方向運動,點B以4cm/s的速度沿射線PN方向運動.設(shè)運動時間為ts.
(1)求PQ的長;
(2)當t為何值時,直線AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為1,銳角△ABC內(nèi)接于⊙O,作BD⊥AC于點D,OM⊥AB于點M.sin∠CBD=
13
.則OM=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,銳角△ABC內(nèi)接于⊙O,弦AB=8,BD⊥AC于點D,OM⊥AB于點M,則sin∠CBD的值等于( 。
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新疆)如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,兩弦AB、CD相交于AB中點E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為(  )
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步練習(xí)冊答案