若x2=a,則( 。
分析:根據(jù)平方數(shù)非負數(shù)的性質(zhì)解答.
解答:解:∵平方數(shù)非負數(shù),x2=a,
∴a≥0.
故選D.
點評:本題利用平方考查了平方數(shù)非負數(shù)的性質(zhì),是基礎(chǔ)題,比較簡單.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

x22(m3)x25是一個完全平方式,則m的值應(yīng)為

A13                 B8                   C.-2              D8或-2

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

(x1,y1),(x2y2),(x3,y3)都是y=的圖象上的點,且x10x2x3.則下列各式正確的是(   

A.y1y2y3                                                     B.y1y2y3

C.y2y1y3                                                     D.y2y3y1

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點一測叢書 八年級數(shù)學(xué) 下。ńK版課標本) 江蘇版 題型:013

反比例函數(shù)中系數(shù)k的幾何意義

  反比例函數(shù)y=(k≠0)任取一點M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因為b=,故ab=k,所以S=|k|(如圖(1)).

  這就是說,過雙曲線上任意一點作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會給解題帶來方便.現(xiàn)舉例如下:

  例1:如(2)圖,已知點P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大小.

  解答:=|k|

  =|k|

  故

  例2:如圖(3),在y=(x>0)的圖像上有三點A、B、C,經(jīng)過三點分別向x軸引垂線,交x軸于A1、B1、C1三點,連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=,

  |k|=

  |k|=

  S1=S2=S3,故選A.

  例3:一個反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點,AM⊥x軸,垂足為M,O是原點,如果△AOM的面積是3,那么這個反比例函數(shù)的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲線在第三象限

  ∴k>0∴k=6

  ∴所以反比例函數(shù)的解析式為y=

  根據(jù)是述意義,請你解答下題:

  如圖(5),過反比例函數(shù)y=(x>0)的圖像上任意兩點A、B分別作軸和垂線,垂足分別為C、D,連結(jié)OA、OB,設(shè)AC與OB的交點為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

x2+2(m-3)x+16是完全平方式,m的值應(yīng)是( )

A-5                            B-1              C7                D-17

 

查看答案和解析>>

同步練習冊答案