【題目】已知n為正整數(shù),你能肯定2n+4﹣2n一定是30的倍數(shù)嗎?

【答案】2n+4﹣2n一定是30的倍數(shù)

【解析】試題分析:原式提取公因式變形,即可做出判斷.

試題解析:解:2n+4﹣2n=2n24﹣1=15×2n,

n為正整數(shù),得到2n2的倍數(shù),

15×2n30的倍數(shù),即2n+4﹣2n一定是30的倍數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:用n根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

問題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過試驗(yàn)、觀察、類比,最后歸納、猜測(cè)得出結(jié)論.

探究一:

(1)用3根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

此時(shí),顯然能搭成一種等腰三角形。所以,當(dāng)時(shí),

(2)用4根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形

所以,當(dāng)時(shí),

(3)用5根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形

所以,當(dāng)時(shí),

(4)用6根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形

所以,當(dāng)時(shí),

綜上所述,可得表

3

4]

5

6

1

0

1

1

探究二:

(1)用7根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?

(仿照上述探究方法,寫出解答過程,并把結(jié)果填在表中)

(2)分別用8根、9根、10根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三

角形?(只需把結(jié)果填在表中)

7

8

9

10

你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,……

解決問題:用根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

(設(shè)分別等于、、、,其中是整數(shù),把結(jié)果填在表中)

問題應(yīng)用:用2016根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)其中面積最大的等腰三角形每個(gè)腰用了__________________根木棒。(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司要把240噸白砂糖運(yùn)往某市的、兩地,用大、小兩種貨車共20輛,恰好能一次性裝完這批白砂糖.已知這兩種貨車的載重量分別為15噸/輛和10噸/輛,運(yùn)往地的運(yùn)費(fèi)為:大車630元/輛,小車420元/輛;運(yùn)往地的運(yùn)費(fèi)為:大車750元/輛,小車550元/輛.

(1)求兩種貨車各用多少輛;

(2)如果安排10輛貨車前往地,其中調(diào)往地的大車有輛,其余貨車前往地,若設(shè)總運(yùn)費(fèi)為,求W與的關(guān)系式(用含有的代數(shù)式表示W(wǎng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2﹣x﹣1=0的根的情況為(

A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根

C.只有一個(gè)實(shí)數(shù)根 D.沒有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形ABCD中,CHAB,垂足為H,交對(duì)角線AC于M,連接BM,且AH=3.

(1)求DM的長(zhǎng);

(2)如圖2,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)PMB的面積為S(S0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,當(dāng)點(diǎn)P在邊AB上運(yùn)動(dòng)時(shí),是否存在這樣的t的值,使MPB與BCD互為余角?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿ABCD路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 DCBA路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過程中,Q點(diǎn)停留了1s,圖是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.

(1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?

(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;

(3)將圖補(bǔ)充完整;

(4)當(dāng)時(shí)間t為何值時(shí),PCQ為等腰三角形?請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x2y﹣y3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x2+3x(x﹣3)﹣9=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算中,正確的是

A、X3+X3=X6 B、a6÷a2=a3

C、3a+5b=8ab D、ab3=-a3b3

查看答案和解析>>

同步練習(xí)冊(cè)答案