解:(1)∵AB∥CD,
∴∠B=∠BOD,
而∠BOD=∠BPD+∠D,
∴∠B=∠BPD+∠D,
即∠BPD=∠B-∠D;
(2)(1)中的結(jié)論不成立,∠BPD=∠B+∠D.
作PQ∥AB,如圖2,
∵AB∥CD,
∴AB∥PQ∥CD,
∴∠1=∠B,∠2=∠D,
∴∠BPD=∠B+∠D;
(3)∠BPD=∠B+∠D+∠BQD.理由如下:
連結(jié)QP并延長到E,如圖3,
∵∠1=∠B+∠BQP,∠2=∠D+∠DQP,
∴∠1+∠2=∠B+∠BQP+∠D+∠DQP,
∴∠BPD=∠B+∠D+∠BQD;
(4)連結(jié)AG,如圖4,
∵∠B+∠F=∠BGA+∠FAG,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(5-2)×180°=6×90°,
∴n=6.
故答案為6.
分析:(1)先根據(jù)平行線性質(zhì)得∠B=∠BOD,再根據(jù)三角形外角性質(zhì)得∠BOD=∠BPD+∠D,則∠BPD=∠B-∠D;
(2)作PQ∥AB,根據(jù)平行線性質(zhì)得AB∥PQ∥CD,則∠1=∠B,∠2=∠D,所以∠BPD=∠B+∠D;
(3)連結(jié)QP并延長到E,根據(jù)三角形外角性質(zhì)得∠1=∠B+∠BQP,∠2=∠D+∠DQP,然后把兩式相加即可得到∠BPD=∠B+∠D+∠BQD;
(4)連結(jié)AG,根據(jù)三角形內(nèi)角和定理和對(duì)頂角相等得到∠B+∠F=∠BGA+∠FAG,則可把∠A+∠B+∠C+∠D+∠E+∠F+∠G化為五邊形ACDEG的內(nèi)角和,然后根據(jù)多邊形的內(nèi)角和定理求解.
點(diǎn)評(píng):本題考查了平行線的判定與性質(zhì):內(nèi)錯(cuò)角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ);同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,同位角相等.也考查了三角形外角性質(zhì)和多邊形內(nèi)角定理.