【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn))△ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3)
(1)請在網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系,并寫出B坐標(biāo);
(2)作出與△ABC關(guān)于y軸對稱的△A′B′C′,并寫出點(diǎn)B′和C′的坐標(biāo);
(3)求△ABC的面積.
【答案】(1)B(﹣2,1);(2)B′(2,1),C′(1,3);(3)4
【解析】
(1)先利用A、C坐標(biāo)確定平面直角坐標(biāo)系位置即可求出B點(diǎn)坐標(biāo);
(2)作圖見詳解;利用關(guān)于y軸對稱的兩點(diǎn)坐標(biāo)特征:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相同.即可求出B′、C′的坐標(biāo);
(3)用一個過A、B、C三點(diǎn)的長方形把△ABC框住,再利用長方形面積減去其余直角三角形的面積即可.
解:(1)如圖:B(﹣2,1);
(2)如圖所示:△A′B′C′即為所求,
B′(2,1),C′(1,3);
(3)△ABC的面積:4×3﹣×2×3﹣×2×4﹣×2×1=12﹣3﹣4﹣1=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A是y軸負(fù)半軸上的一個動點(diǎn),點(diǎn)B是x軸負(fù)半軸上的一個動點(diǎn),連接AB,過點(diǎn)B作AB的垂線,使得BC=AB,且點(diǎn)C在x軸的上方.
(1)求證:∠CBD=∠BAO;
(2)如圖2,點(diǎn)A、點(diǎn)B在滑動過程中,把AB沿y軸翻折使得AB'剛好落在AC的邊上,此時BC交y軸于點(diǎn)H,過點(diǎn)C作CN垂直y軸于點(diǎn)N,求證AH=2CN;
(3)如圖3,點(diǎn)A、點(diǎn)B在滑動過程中,使得點(diǎn)C在第二象限內(nèi),過點(diǎn)C作CF垂直y軸于點(diǎn)F,求證:OB=AO+CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郴州市正在創(chuàng)建“全國文明城市”,某校擬舉辦“創(chuàng)文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.
(1)A、B兩種獎品每件各多少元?
(2)現(xiàn)要購買A、B兩種獎品共100件,總費(fèi)用不超過900元,那么A種獎品最多購買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C在OB上,若將△ABC沿AC折疊,使點(diǎn)B恰好落在x軸上的點(diǎn)D處,則C點(diǎn)的坐標(biāo)為( )
A.(4,0)B.(0,2)C.(0,1.5)D.(0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE、△BCF, 則下列結(jié)論:
①△EBF≌△DFC;
②四邊形AEFD為平行四邊形;
③當(dāng)AB=AC,∠BAC=1200時,四邊形AEFD是正方形.
其中正確的結(jié)論是 .(請寫出正確結(jié)論的番號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊AB上的一動點(diǎn)(不與點(diǎn)A、B重合),連接DE,點(diǎn)A關(guān)于直線DE的對稱點(diǎn)為F,連接EF并延長交BC于點(diǎn)G,連接DG,過點(diǎn)E作EH⊥DE交DG的延長線于點(diǎn)H,連接BH.
(1)求證:GF=GC;
(2)用等式表示線段BH與AE的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶是一座美麗的山坡,某中學(xué)依山而建,校門A處,有一斜坡AB,長度為13米,在坡頂B處看教學(xué)樓CF的樓頂C的仰角∠CBF=53°,離B點(diǎn)4米遠(yuǎn)的E處有一花臺,在E處仰望C的仰角∠CEF=63.4°,CF的延長線交校門處的水平面于D點(diǎn),F(xiàn)D=5米.
(1)求斜坡AB的坡度i;(2)求DC的長.(參考數(shù)據(jù):tan53°≈,tan63.4°≈2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中線,AE是∠BAD的角平分線,DF∥AB交AE的延長線于點(diǎn)F,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com