【題目】已知關(guān)于的方程x2-(2k+1)x+4k-2=0
(1)求證:不論k取何值,這個方程總有實數(shù)根
(2)若等腰△ABC一邊長a=4,另兩邊長b,c恰好是這個方程的兩根,求△ABC的周長.
【答案】(1)證明見解析;(2)10.
【解析】(1)根據(jù)方程各項的系數(shù)利用根的判別式即可得出=(2k-3)2≥0,此題得證;
(2)當(dāng)a為底時,則b、c為腰,根據(jù)兩根相等得出k的值;當(dāng)a為腰時,則b、c中有一個的值也等于4,將其代入方程求出k的值;再根據(jù)根與系數(shù)的關(guān)系求出a+b的值,進(jìn)而可求出三角形的周長.
(1)證明:∵在方程x2-(2k+1)x+4k-2=0中,
△=[-(2k+1)]2-4(4k-2)=4k2-12k+9=(2k-3)2≥0,
∴不論k取什么實數(shù)值,這個方程總有實數(shù)根;
(2)解:當(dāng)a為底邊時,b=c,
∴△=(2k-3)2=0,解得:k=,
∴b+c=2k+1=4=a,
∴此種情況不合適;
當(dāng)a為腰時,將x=4代入原方程得:16-4(2k+1)+4k-2=0,
解得:k=.
∴b+c=2k+1=6,
∴△ABC的周長=a+b+c=4+6=10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形ABC的邊長為2,E、F、G分別是邊AB、BC、CA的點,且AE=BF=CG,設(shè)△EFG的面積為y,AE的長為x,則y與x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:
(1)設(shè)△APQ的面積為S,當(dāng)t為何值時,S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當(dāng)四邊形PQP′C為菱形時,求t的值;′
(3)當(dāng)t為何值時,△APQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
若A、B、C為數(shù)軸上三點,若點C到A的距離是點C到B的距離2倍,我們就稱點C是(A,B)的妙點.
例如,如圖1,點A表示的數(shù)為﹣1,點B表示的數(shù)為2.表示1的點C到點A的距離是2,到點B的距離是1,那么點C是(A,B)的妙點;又如,表示0的點D到點A的距離是1,到點B的距離是2,那么點D就不是(A,B)的妙點,但點D是(B,A)的妙點.
知識運用:如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為﹣2,點N所表示的數(shù)為4.
(1)數(shù) 所表示的點是(M,N)的妙點;
(2)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣40,點B所表示的數(shù)為20.現(xiàn)有一只電子螞蟻P從點B出發(fā)向左運動,到達(dá)點A停止.P點運動多少個單位時,P、A和B中恰有一個點為其余兩點的妙點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射擊隊為從甲、乙兩名運動員選拔一人參加運動會,對他們進(jìn)行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán))
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)由表格中的數(shù)據(jù),計算出甲的平均成績是 環(huán),乙的成績是 環(huán).
(2)結(jié)合平均水平與發(fā)揮穩(wěn)定性你認(rèn)為推薦誰參加比賽更適合,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD和四邊形AECF都是矩形,AE與BC交于點M,CF與AD交于點N.
(1)求證:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF滿足何種關(guān)系時,四邊形AMCN是菱形,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為 a的正方形ABCD和邊長為 b的正方形BEFG排放在一起,O1和O2分別是這兩個正方形的中心,則陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com