(2010•常德)如圖,四邊形ABCD中,AB∥CD,要使四邊形ABCD為平行四邊形,則應添加的條件是    .(添加一個條件即可,不添加其它的點和線).
【答案】分析:本題是開放題,可以針對平行四邊形的各種判定方法,給出條件.答案可以有多種,主要條件明確,說法有理即可.
解答:解:可添加的條件有:AB=CD或AD∥BC或∠A=∠C等,答案不唯一;
以∠A=∠C為例進行說明;
證明:∵AB∥CD,
∴∠B+∠C=180°;
∵∠A=∠C,
∴∠A+∠B=180°;
∴AD∥BC;
∵AD∥BC,AB∥CD,
∴四邊形ABCD是平行四邊形.(兩組對邊分別平行的四邊形是平行四邊形)
故答案為:AB=CD或AD∥BC或∠A=∠C等(不唯一)
點評:本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解答此類題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2010•常德)如圖,已知拋物線y=x2+bx+c與x軸交于點A(-4,0)和B(1,0)兩點,與y軸交于C點.
(1)求此拋物線的解析式;
(2)設E是線段AB上的動點,作EF∥AC交BC于F,連接CE,當△CEF的面積是△BEF面積的2倍時,求E點的坐標;
(3)若P為拋物線上A、C兩點間的一個動點,過P作y軸的平行線,交AC于Q,當P點運動到什么位置時,線段PQ的值最大,并求此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖南省常德市中考數(shù)學試卷(解析版) 題型:解答題

(2010•常德)如圖,已知拋物線y=x2+bx+c與x軸交于點A(-4,0)和B(1,0)兩點,與y軸交于C點.
(1)求此拋物線的解析式;
(2)設E是線段AB上的動點,作EF∥AC交BC于F,連接CE,當△CEF的面積是△BEF面積的2倍時,求E點的坐標;
(3)若P為拋物線上A、C兩點間的一個動點,過P作y軸的平行線,交AC于Q,當P點運動到什么位置時,線段PQ的值最大,并求此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的相似》(07)(解析版) 題型:解答題

(2010•常德)如圖1,若四邊形ABCD、四邊形GFED都是正方形,顯然圖中有AG=CE,AG⊥CE;
(1)當正方形GFED繞D旋轉到如圖2的位置時,AG=CE是否成立?若成立,請給出證明;若不成立,請說明理由;
(2)當正方形GFED繞D旋轉到如圖3的位置時,延長CE交AG于H,交AD于M.
①求證:AG⊥CH;
②當AD=4,DG=時,求CH的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圓》(14)(解析版) 題型:解答題

(2010•常德)如圖AB是⊙O的直徑,∠A=30°,延長OB到D使BD=OB.
(1)△OBC是否是等邊三角形?說明理由;
(2)求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(13)(解析版) 題型:解答題

(2010•常德)如圖1,若四邊形ABCD、四邊形GFED都是正方形,顯然圖中有AG=CE,AG⊥CE;
(1)當正方形GFED繞D旋轉到如圖2的位置時,AG=CE是否成立?若成立,請給出證明;若不成立,請說明理由;
(2)當正方形GFED繞D旋轉到如圖3的位置時,延長CE交AG于H,交AD于M.
①求證:AG⊥CH;
②當AD=4,DG=時,求CH的長.

查看答案和解析>>

同步練習冊答案