【題目】如圖,已知矩形 中,,, 是矩形 中能剪出的最大圓,矩形 固定不動, 從如圖位置開始沿射線 方向平移,當(dāng) 與矩形 重疊部分面積為 面積一半時,平移距離為________________

【答案】2 7

【解析】

根據(jù)是矩形中能剪出的最大圓可得直徑為4,當(dāng)與矩形重疊部分面積為面積一半時,即點(diǎn)O在直線ABDC上時,根據(jù)點(diǎn)O平移的距離即可得出平移的距離.

解:∵是矩形中能剪出的最大圓,

直徑為4;

∵當(dāng)與矩形重疊部分面積為面積一半時,

∴此時點(diǎn)O在線段AB或線段DC上;

當(dāng)點(diǎn)OAB上時,由圖可知點(diǎn)O向右平移了一個半徑的長度,

即:平移了2個單位長度;

當(dāng)點(diǎn)ODC上時,可知點(diǎn)O向右平移了一個半徑長度加BC長度,

即:平移了個單位長度;

綜上可得,當(dāng)與矩形重疊部分面積為面積一半時,平移距離為27;

故答案為:27.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知,且3x+4z﹣2y=40,求x,y,z的值;

(2)已知:兩相似三角形對應(yīng)高的比為3:10,且這兩個三角形的周長差為560cm,求它們的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一小孩將一只皮球從A處拋出去,它所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA1m,球路的最高點(diǎn)B(89),則這個二次函數(shù)的表達(dá)式為______,小孩將球拋出了約______(精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,AECD,AD、BE相交于點(diǎn)P,BQDAQ,∠BPQ的度數(shù)是_____;若PQ3,EP1,則DA的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABO中,OA=OB,C是邊AB的中點(diǎn),以O為圓心的圓過點(diǎn)C.

1)求證:AB⊙O相切;

2)若∠AOB=120°,AB=,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的外接圓,,的中點(diǎn),延長線上一點(diǎn),若,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小方格都是長為1個單位的正方形.若學(xué)校位置的坐標(biāo)為A(12),解答以下問題:

(1)請在圖中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出圖書館B位置的坐標(biāo);

(2)若體育館位置的坐標(biāo)為C(3,3),請在坐標(biāo)系中標(biāo)出體育館的位置,并順次連接學(xué)校、圖書館、體育館,得到△ABC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD和CD分別平分ABC的內(nèi)角EBA和外角ECA,BD交AC于F,連接AD.

(1)求證:BDC=BAC

(2)若AB=AC,請判斷ABD的形狀,并證明你的結(jié)論;

(3)在(2)的條件下,若AF=BF,求EBA的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列文字與例題,并解答。

將一個多項(xiàng)式分組進(jìn)行因式分解后,可用提公因式法或公式法繼續(xù)分解的方法稱作分組分解法。例如:以下式子的分解因式的方法叉稱為分組分解法。

1)試用“分組分解法”分解因式:

2)已知四個實(shí)數(shù)a,b,c,d滿足。并且,,同時成立。

①當(dāng)k=1時,求a+c的值;

②當(dāng)k≠0時,用含a的代數(shù)式分別表示b、cd

查看答案和解析>>

同步練習(xí)冊答案