如圖,拋物線y=x2+bx-2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(一1,0).

⑴求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
⑵判斷△ABC的形狀,證明你的結(jié)論;
⑶點(diǎn)M(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)CM+DM的值最小時(shí),求m的值.
(1)∵點(diǎn)A(-1,0)在拋物線y=x2 + bx-2上,∴× (-1 )2 + b× (-1)–2 = 0,解得b =
∴拋物線的解析式為y=x2-x-2. y=x2-x-2 = ( x2 -3x- 4 ) =(x-)2-,
∴頂點(diǎn)D的坐標(biāo)為 (, -).
(2)當(dāng)x = 0時(shí)y = -2,      ∴C(0,-2),OC = 2。
當(dāng)y = 0時(shí), x2-x-2 = 0,     ∴x1 =" -1," x2 = 4,    ∴B (4,0)
∴OA = 1,    OB = 4,    AB = 5.
∵AB2 = 25,    AC2 = OA2 + OC2 = 5,    BC2 = OC2 + OB2 = 20,
∴AC2 +BC2 = AB2.               ∴△ABC是直角三角形.
(3)作出點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C′,則C′(0,2),OC′=2,連接C′D交x軸于點(diǎn)M,根據(jù)軸對(duì)稱性及兩點(diǎn)之間線段最短可知,MC + MD的值最小。

解法一:設(shè)拋物線的對(duì)稱軸交x軸于點(diǎn)E.
∵ED∥y軸, ∴∠OC′M=∠EDM,∠C′OM=∠DEM
∴△C′OM∽△DEM.

,∴m =
解法二:設(shè)直線C′D的解析式為y =" kx" + n ,
,解得n =" 2,"  .
 .
∴當(dāng)y = 0時(shí), ,
 .    ∴.
(1)根據(jù)拋物線過A(-1,0)點(diǎn),直接求出b的值,再根據(jù)配方法求出二次函數(shù)頂點(diǎn)坐標(biāo)即可;
(2)分別求出三角形三邊,即可得出三角形的形狀;
(3)首先可求得二次函數(shù)的頂點(diǎn)坐標(biāo),再求得C關(guān)于x軸的對(duì)稱點(diǎn)C′,求得直線C′D的解析式,與x軸的交點(diǎn)的橫坐標(biāo)即是m的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)當(dāng)時(shí),有最大值為5,且它的圖象經(jīng)過點(diǎn)(2,3),求:
(1)這個(gè)函數(shù)的關(guān)系式;
(2)當(dāng)函數(shù)值不小于3時(shí),請(qǐng)直接寫出對(duì)應(yīng)的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線AB交x軸于點(diǎn)B(4,0),交y軸于點(diǎn)A(0,4),直線DM⊥x軸正半軸于點(diǎn)M,交線段AB于點(diǎn)C,DM=6,連接DA,∠DAC=90°.

(1)直接寫出直線AB的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P是線段MB上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交AB于點(diǎn)F,交過O、D、B三點(diǎn)的拋物線于點(diǎn)E,連接CE.是否存在點(diǎn)P,使△BPF與△FCE相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a>0)的頂點(diǎn)是C(0,1),直線l:y=-ax+3與這條拋物線交于P、Q兩點(diǎn),與x軸、y軸分別交于點(diǎn)M和N。
(1)設(shè)點(diǎn)P到x軸的距離為2,試求直線l的函數(shù)關(guān)系式;
(2)若線段MP與PN的長(zhǎng)度之比為3:1,試求拋物線的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象如圖所示,則函數(shù)的圖象是(    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是 _  __   __

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

求證:m取任何實(shí)數(shù)時(shí),拋物線的圖象與x軸必有兩個(gè)交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

根據(jù)下列表格中的對(duì)應(yīng)值得到二次函數(shù)(a≠0)于x軸有一個(gè)交點(diǎn)的橫坐標(biāo)x的范圍是(    )                                   
x
3.23
3.24
3.25
3.26
y
﹣0.06
﹣0.02
0.03
0.09
 
A.x<3.23                  B.3.23<x<3.24
C.3.24<x<3.25            D.3.25<x<3.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)(a>0,b>0)的圖象交于點(diǎn)P,點(diǎn)P的縱坐標(biāo)為1,則關(guān)于x的方程的解為           .

查看答案和解析>>

同步練習(xí)冊(cè)答案