如圖,AB∥CD,直線EF分別交AB、CD于從P,MN、PQ分別平分∠AME和∠DPF,
(1)試說明:∠AMN=∠DPQ;
(2)試說明:MN∥PQ.
分析:(1)根據(jù)平行線的性質可得∠AME=∠CPE,再由對頂角相等可得∠CPE=∠DPF,從而得出∠AME=∠DPF,由角平分線的性質可得出結論.
(2)由AB∥CD可得∠AMP=∠DPM,再由(1)的結論,可得∠NMP=∠QPM,繼而證明結論.
解答:解:(1)∵AB∥CD,
∴∠AME=∠CPE,
又∵∠CPE=∠DPF(對頂角相等),
∴∠AME=∠DPF,
∵MN、PQ分別平分∠AME和∠DPF,
∴∠AMN=∠DPQ.
(2)∵AB∥CD,
∴∠AMP=∠DPM,
∴∠AMP+∠AMN=∠DPM+∠DPQ,即∠NMP=∠QPM,
∴MN∥PQ(內錯角相等,兩直線平行).
點評:本題考查了平行線的判定與性質,解答本題的關鍵是性質定理的掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜邊MN=10cm,A點與N點重合,MN和AB在一條直線上,設等腰梯形ABCD不動,等腰直角三角形PMN沿AB所在直線以1cm/s的速度向右移動,直到點N與點B重合為止.
(1)等腰直角三角形PMN在整個移動過程中與等腰梯形ABCD重疊部分的形狀由
 
形變化為
 
形;
(2)設當?shù)妊苯侨切蜳MN移動x(s)時,等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2),求y與x之間的函數(shù)關系式;
(3)當x=4(s)時,求等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在舞臺上有兩根豎直放置的鐵桿,其中鐵桿AB長1m,CD長2m,兩根鐵桿之間的距離為3m,現(xiàn)在B、D之間拉起一根鋼索,雜技演員在上面表演走鋼絲,為了描述演員的位置,小明以A點為坐標原點,建立了如圖所示的平面直角坐標系,演員的位置為點M,設其精英家教網(wǎng)橫坐標為x,縱坐標為y.
(1)寫出線段BD的函數(shù)關系式;
(2)為了保護演員的安全,過D點拉了一根與地面平行的鋼索DE,在上面掛上了一條保險鋼絲MN,MN隨演員的移動而移動,并始終垂直于地面,其長度自動調整,設保險鋼絲的長度為w,求w與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將網(wǎng)格中的三條線段AB、CD、EF沿網(wǎng)格線(水平和鉛直方向)平移,使它們首尾相接構成三角形,至少需要移動
7
7
格.

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應性考試數(shù)學試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

同步練習冊答案