如圖,拋物線y=x2+bx+c與x軸的負(fù)半軸相交于A、B兩點(diǎn),與y軸的正半軸相交于C點(diǎn),與雙曲線y=的一個(gè)交點(diǎn)是(1,m),且OA=OC.求拋物線的解析式.

【答案】分析:求拋物線的解析式就是求b、c值,由雙曲線性質(zhì)可求交點(diǎn)坐標(biāo),根據(jù)坐標(biāo)與線段長(zhǎng)度關(guān)系容易求b、c值,然后即可求出拋物線的解析式.
解答:解:把x=1,y=m,
代入y=
∴m=6,
把x=1,y=6代入y=x2+bx+c,
得1+b+c=6,
∴b+c=5 ①
令x=O,得y=c,
∴點(diǎn)C的坐標(biāo)是(0,c),
又∵OA=OC,
∴點(diǎn)A的坐標(biāo)為(-c,O),
把A點(diǎn)坐標(biāo)代入y=x2+bx+c得,(-c)2+b(-c)+c=O,
即c(c-b)+c=0,c(c-b+1)=0,
又∵c>0,
得c-b=-1②
聯(lián)立①、②所組成的方程組,
解得b=3,c=2
所以y=x2+3x+2.
點(diǎn)評(píng):此題難度中等,主要考查反比例函數(shù)和拋物線的圖象和性質(zhì)及用待定系數(shù)法求函數(shù)的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點(diǎn)B、O,它的頂點(diǎn)為A,連接AB,AO.
(1)求點(diǎn)A的坐標(biāo);
(2)以點(diǎn)A、B、O、P為頂點(diǎn)構(gòu)造直角梯形,請(qǐng)求一個(gè)滿足條件的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點(diǎn)A(x1,0)、B(x2,0),點(diǎn)A在點(diǎn)B的左側(cè).當(dāng)x=x2-2時(shí),y
0(填“>”“=”或“<”號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對(duì)稱軸是直線x=-1,且頂點(diǎn)在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線MG,垂足為G,過(guò)點(diǎn)M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點(diǎn),若M點(diǎn)的橫坐標(biāo)為x,矩形MNHG的周長(zhǎng)為l.
(1)求出k的值;
(2)寫出l關(guān)于x的函數(shù)解析式;
(3)是否存在點(diǎn)M,使矩形MNHG的周長(zhǎng)最。咳舸嬖,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•揚(yáng)州)如圖,拋物線y=x2-2x-8交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線AB對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點(diǎn)A、B之間平行移動(dòng),直尺兩長(zhǎng)邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求拋物線頂點(diǎn)M關(guān)于x軸對(duì)稱的點(diǎn)M′的坐標(biāo),并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案