如圖所示,在⊙O中,=,弦AB與弦AC交于點(diǎn)A,弦CD與AB交于點(diǎn)F,連接BC.
(1)求證:AC2=AB•AF;
(2)若⊙O的半徑長(zhǎng)為2cm,∠B=60°,求圖中陰影部分面積.

【答案】分析:(1)由=,利用等弧所對(duì)的圓周角相等得到一對(duì)角相等,再由一對(duì)公共角相等,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似可得出△ACF與△ABC相似,根據(jù)相似得比例可得證;
(2)連接OA,OC,利用同弧所對(duì)的圓心角等于圓周角的2倍,由∠B為60°,求出∠AOC為120°,過(guò)O作OE垂直于AC,垂足為點(diǎn)E,由OA=OC,利用三線合一得到OE為角平分線,可得出∠AOE為60°,在Rt△AOE中,由OA及cos60°的值,利用銳角三角函數(shù)定義求出OE的長(zhǎng),在Rt△AOE中,利用勾股定理求出AE的長(zhǎng),進(jìn)而求出AC的長(zhǎng),由扇形AOC的面積-△AOC的面積表示出陰影部分的面積,利用扇形的面積公式及三角形的面積公式即可求出陰影部分的面積.
解答:(1)證明:∵=
∴∠ACD=∠ABC,又∠BAC=∠CAF,
∴△ACF∽△ABC,
=,即AC2=AB•AF;

(2)解:連接OA,OC,過(guò)O作OE⊥AC,垂足為點(diǎn)E,
如圖所示:
∵∠ABC=60°,∴∠AOC=120°,
又∵OA=OC,∴∠AOE=∠COE=×120°=60°,
在Rt△AOE中,OA=2cm,
∴OE=OAcos60°=1cm,
∴AE==cm,
∴AC=2AE=2cm,
則S陰影=S扇形OAC-S△AOC=-×2×1=(-)cm2
點(diǎn)評(píng):此題考查了扇形面積的求法,涉及的知識(shí)有:相似三角形的判定與性質(zhì),弧、圓心角及弦之間的關(guān)系,等腰三角形的性質(zhì),勾股定理,以及銳角三角函數(shù)定義,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在?ABCD中,EF∥AB且交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,BF交于點(diǎn)M,連接CF,DE交于點(diǎn)N,求證:MN∥AD且MN=
12
AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠C=90°,D是AC邊上一點(diǎn),且AD=DB=5,CD=3,求tan∠CBD和sinA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖所示,在?ABCD中,E,F(xiàn)分別AB,CD的中點(diǎn),連接DE,EF,BF,則圖中平行四邊形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖所示,在△ABC中畫(huà)出長(zhǎng)寬之比為2:1的矩形,使長(zhǎng)邊在BC上.(注:保留畫(huà)圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,已知D是BC邊上的點(diǎn),O為△ABD的外接圓圓心,△ACD的外接圓與△AOB的外接圓相交于A,E兩點(diǎn).求證:OE⊥EC.

查看答案和解析>>

同步練習(xí)冊(cè)答案