(1997•浙江)如圖,?ABCD中,對(duì)角線AC和BD交于點(diǎn)O,過(guò)O作OE∥BC交DC于點(diǎn)E,若OE=5cm,則AD的長(zhǎng)為
10
10
cm.
分析:由?ABCD中,對(duì)角線AC和BD交于點(diǎn)O,OE∥BC,可得OE是△ACD的中位線,根據(jù)三角形中位線的性質(zhì),即可求得AD的長(zhǎng).
解答:解:∵四邊形ABCD是平行四邊形,
∴OA=OC,AD∥BC,
∵OE∥BC,
∴OE∥AD,
∴OE是△ACD的中位線,
∴AD=2OE=2×5=10(cm).
故答案為:10.
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì)以及三角形中位線的性質(zhì).此題比較簡(jiǎn)單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•浙江)如圖,矩形ABCD中,AB=3,BC=4,線段EF在對(duì)角線AC上,EG⊥AD,F(xiàn)H⊥BC,垂足分別是G,H,且EG+FH=EF.
(1)求線段EF的長(zhǎng);
(2)設(shè)EG=x,△AGE與△CFH的面積和為S,寫出S關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍,并求出S的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•浙江)如圖,AB∥CD,AD和BC交于點(diǎn)O,若∠A=42°,∠C=51°,則∠AOB=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•浙江)如圖,銳角△ABC中,以BC為直徑的半圓分別交AB,AC于點(diǎn)D,E,記△ADE的面積為S1,△ABC的面積為S2,則
S1
S2
=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•浙江)如圖,⊙O1與⊙O2相交,大圓⊙O1的弦AB⊥O1O2,垂足是F,且交⊙O2于點(diǎn)C,D,過(guò)B作⊙O2的切線,E為切點(diǎn),已知BE=DE,BD=m,BE=n,AC,CE的長(zhǎng)是關(guān)于x的方程x2+px+q=0的兩個(gè)根.
(1)求證:AC=BD;
(2)用含m,n的代數(shù)式分別表示p和q;
(3)如果關(guān)于x的方程qx2-(m2+mp)x+1=0有兩個(gè)相等的實(shí)數(shù)根,且∠DEB=30°,求⊙O2的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案