精英家教網 > 初中數學 > 題目詳情

【題目】計算:
(1)22﹣20120+(﹣6)÷3;
(2)

【答案】
(1)解:22﹣20120+(﹣6)÷3

=4﹣1+(﹣2)

=3﹣2

=1


(2)解: +(3x+1)

= +(3x+1)

=x﹣1+3x+1

=4x


【解析】(1)原式第一項22表示兩個2的乘積,第二項利用零指數公式化簡,第三項利用兩數相除異號得負,并把絕對值相除得出商,合并后即可得到結果;(2)原式第一項的第一個因式的分子利用平方差公式分解因式,約分后得到最簡結果,與第二項合并后即可得到結果.
【考點精析】解答此題的關鍵在于理解分式的混合運算的相關知識,掌握運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當有多層括號時,先算括號內的運算,從里向外{[(?)]},以及對零指數冪法則的理解,了解零次冪和負整數指數冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點P從A點出發(fā),以 cm/s的速度,沿AC向C作勻速運動;與此同時,點Q也從A點出發(fā),以1cm/s的速度,沿射線AB作勻速運動.當P運動到C點時,P、Q都停止運動.設點P運動的時間為ts.
(1)當P異于A、C時,請說明PQ∥BC;
(2)以P為圓心、PQ長為半徑作圓,請問:在整個運動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點和2個公共點?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】菱形ABCD中,∠B=60°,點E在邊BC上,點F在邊CD上.
(1)如圖1,若E是BC的中點,∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,圓周角∠BAC=55°,分別過B,C兩點作⊙O的切線,兩切線相交于點P,則∠BPC=°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點O為坐標原點,點D為拋物線的頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應的函數解析式;
(2)求△ABD的面積;
(3)將△AOC繞點C逆時針旋轉90°,點A對應點為點G,問點G是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,點D在AC上,已知∠BDC=45°,BD=10 ,AB=20.求∠A的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知反比例函數y= (k1>0),y= (k2<0).點A在y軸的正半軸上,過點A作直線BC∥x軸,且分別與兩個反比例函數的圖象交于點B和C,連接OC、OB.若△BOC的面積為 ,AC:AB=2:3,則k1= , k2=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,頂點為P(4,﹣4)的二次函數圖象經過原點(0,0),點A在該圖象上,OA交其對稱軸l于點M,點M、N關于點P對稱,連接AN、ON,

(1)求該二次函數的關系式;
(2)若點A的坐標是(6,﹣3),求△ANO的面積;
(3)若點A在對稱軸l右側的二次函數圖象上運動時,請解答下面問題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請求出所有符合條件的點A的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,FC.

(1)請判斷:FG與CE的數量關系是 , 位置關系是;
(2)如圖2,若點E,F分別是邊CB,BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F分別是邊BC,AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

同步練習冊答案