【題目】一家商店因換季將某種服裝打折銷售,每件服裝如果按標(biāo)價的4折出售將虧40元,而按標(biāo)價8折出售將賺40元.問:

(1)每件服裝的標(biāo)價是多少元?

(2)每件服裝的成本是多少元?

(3)為了保證不虧損,最多可以打幾折?

【答案】(1) 每件服裝的標(biāo)價是200元.(2) 每件服裝的成本是120元.(3) 最多可以打6折.

【解析】

(1)設(shè)每件服裝的標(biāo)價是x元,若每件服裝如果按標(biāo)價的四折出售將虧40元,此時成本價為0.4x+40元;若按標(biāo)價的八折出售將賺40元,此時成本價為:0.8x﹣40元,由于對于同一件衣服成本價是一樣的,以此為等量關(guān)系,列出方程求解;

(2)由(1)可得出每件衣服的成本價為:0.4x+40元,將(1)求出的x的值代入其中求出成本價;

(3)設(shè)最多可以打y折,則令200×-成本價≥0,求出y的取值范圍即可.

(1)設(shè)每件服裝的標(biāo)價是x元,

根據(jù)題意得:0.4x+40=0.8x﹣40,

解得:x=200.

答:每件服裝的標(biāo)價是200元.

(2)x=200,

0.4x+40=0.4×200+40=120.

答:每件服裝的成本是120元.

(3)設(shè)可以打y折,

根據(jù)題意得:200×﹣120≥0,

解得:y≥6.

答:為了保證不虧損,最多可以打6折.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級全體學(xué)生在5名教師的帶領(lǐng)下去公園秋游,公園的門票為每人30.現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊老師免費,學(xué)生按8折收費;乙方案:師生都按7.5折收費.

(1)若有n名學(xué)生,用含n的代數(shù)式表示兩種優(yōu)惠方案各需多少元?

(2)當(dāng)n=70時,采用哪種方案更優(yōu)惠?

(3)當(dāng)n=100時,采用哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,B=60°,將ABC沿對角線AC折疊,點B的對應(yīng)點落在點E處,且點B,AE在一條直線上,CEAD于點F,則圖中等邊三角形共有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x軸上有點A(1,0),點B在y軸上,點C(m,0)為x軸上一動點且m<﹣1,連接AB,BC,tan∠ABO= ,以線段BC為直徑作⊙M交直線AB于點D,過點B作直線l∥AC,過A,B,C三點的拋物線為y=ax2+bx+c,直線l與拋物線和⊙M的另一個交點分別是E,F(xiàn).

(1)求B點坐標(biāo);
(2)用含m的式子表示拋物線的對稱軸;
(3)線段EF的長是否為定值?如果是,求出EF的長;如果不是,說明理由.
(4)是否存在點C(m,0),使得BD= AB?若存在,求出此時m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,某市正積極推進“五城聯(lián)創(chuàng)”,其中擴充改造綠地是推進工作計劃之一.現(xiàn)有一塊直角三角形綠地,量得兩直角邊長分別為a=9m和b=12m,現(xiàn)要將此綠地擴充改造為等腰三角形,且擴充部分包含以b=12m為直角邊的直角三角形,則擴充后等腰三角形的周長為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點的角平分線上的一點,點在邊上.愛動腦筋的小剛經(jīng)過仔細(xì)觀察后,進行如下操作:在邊上取一點,使得,這時他發(fā)現(xiàn)之間有一定的數(shù)量關(guān)系,請你寫出的數(shù)量關(guān)系__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家、食堂、圖書館依次在同一條直線上,小明從家去食堂吃早餐,接著云圖書館讀報,然后回家。如圖反映了這個過程,小明離家的距離與時間之間的對應(yīng)關(guān)系,下列說法錯誤的是(

A. 小明從家到食堂用了8min B. 小明家離食堂0.6km,食堂離圖書館0.2km

C. 小明吃早餐用了30min,讀報用了17min D. 小明從圖書館回家的平均速度為0.08km/min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△APB與△CDP均為等邊三角形,且PAPD,PAPD.有下列三個結(jié)論:①∠PBC=15°;ADBC③直線PCAB垂直.其中正確的有(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊答案