【題目】如表:方程1、方程2、方程3…是按照一定規(guī)律排列的一列方程:
序號 | 方程 | 方程的解 |
1 | ﹣=1 | x1=3,x2=4 |
2 | ﹣=1 | x1=4,x2=6 |
3 | ﹣=1 | x1=5,x2=8 |
… | … | … |
(1)若方程﹣=1(a>b)的解是x1=6,x2=10,則a=_____b=_____.
(2)請寫出這列方程中第n個方程:_____ 方程的解:_____.
【答案】12, 5, , x1=2n+2,x2=2n+2.
【解析】
首先根據(jù)已知方程兩個重要數(shù)字、方程的解,找出與方程序號之間的關系,寫出第n個方程,即可同時求出(1)、(2)兩個問題答案.
(1)根據(jù)已知方程序號、方程兩個重要數(shù)字、方程的解發(fā)現(xiàn)以下規(guī)律:
序號1,6=2×1+4 2=1+1 3=1+2 4=2×1+2;
序號2,8=2×2+4 3=2+1 4=2+2 6=2×2+2;
序號3,10=2×3+4 4=3+1 5=2+2 8=2×3+2;
序號4,12=2×4+4 5=4+1 6=4+2 10=2×4+2;
由序號4可以發(fā)現(xiàn)方程(a>b)解x1=6,x2=10,
12=2×4+4 5=4+1,
∴a=12,b=5.
故答案為:12,5.
(2)由(1)分析得:
序號n,2n+4=2×n+4 n+1=n+1 n+2=n+2 2n+2=2×n+2;
∴這列方程中第n個方程:,且方程的解為:x1=n+2,x2=2n+2.
故答案為:,x1=n+2,x2=2n+2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動點,PE⊥AB 于 E,PF⊥AC于 F,M 為 EF 中點,則 AM 的最小值為( )
A.1B.1.3C.1.2D.1.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圓上有五個點,這五個點將圓分成五等份(每一份稱為一段弧長),把這五個點按順時針方向依次編號為1,2,3,4,5,若從某一點開始,沿圓周順時針方向行走,點的編號是數(shù)字幾,就走幾段弧長,則稱這種走法為一次“移位”.如:小明在編號為3的點,那么他應走3段弧長,即從3→ 4→5→1為第一次“移位”,這時他到達編號為1的點,然后從1→2為第二次“移位”.若小明從編號為4的點開始,第2020次“移位”后,他到達編號為______的點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小劉同學在一次課外活動中,用硬紙片做了兩個直角三角形,在中,,,;在中,,,.圖①是小劉同學所做的一個數(shù)學探究:他將的直角邊與的斜邊重合在一起,并將沿方向移動.在移動過程中,、兩點始終在邊上(移動開始時點與點重合).
(1)在沿方向移動的過程中,小劉發(fā)現(xiàn):、兩點間的距離逐漸 ;連接后,的度數(shù)逐漸 .(填“不變”、“變大”或“變小”);
(2)小劉同學經(jīng)過進一步地研究,編制了如下問題:
問題①:如圖②,當、的連線與平行時,求平移距離的長;
問題②:如圖③,在的移動過程中,的值是否為定值?如果是,請求出此定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB交x軸于點A(a,0),交軸于點,且,滿足,直線交于點.
(1)________;________;并求直線的解析式;
(2)過點作交軸于點,求點的坐標;
(3)在直線上是否存在一點,使得?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:任意兩個數(shù)a,b,按規(guī)則c=a+b得到一個新數(shù)c,稱所得的新數(shù)c為數(shù)a,b的“傳承數(shù)。”
(1)若a=1,b=2,求a,b的“傳承數(shù)”c;
(2)若a=1,b=,且+3x+1=0,求a,b的“傳承數(shù)”c;
(3)若a=2n+1,b=n1,且a,b的“傳承數(shù)”c值為一個整數(shù),則整數(shù)n的值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的紙箱里裝有紅、黃、藍三種顏色的小球,它們除顏色外完全相同,其中紅球有2 個,黃球有1個,藍球有1個.現(xiàn)有一張電影票,小明和小亮決定通過摸球游戲定輸贏,贏的一方得電影票.
(1)游戲規(guī)則1:兩人各摸1個球,先由小明從紙箱里隨機摸出1個球,記錄顏色后放回,將小球搖勻,再由小亮隨機摸出1個球.若兩人摸到的球顏色相同,則小明贏,否則小亮贏.這個游戲規(guī)則對雙方公平嗎?請你利用樹狀圖或列表法說明理由.
(2)游戲規(guī)則2; 兩人同時各摸1個球,若兩人摸到的球顏色相同,則小明贏,否則小亮贏.這個游戲小明贏得電影票的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題呈現(xiàn):如圖1,點E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD.(S表示面積)
實驗探究:某數(shù)學實驗小組發(fā)現(xiàn):若圖1中AH≠BF,點G在CD上移動時,上述結論會發(fā)生變化,分別過點E、G作BC邊的平行線,再分別過點F、H作AB邊的平行線,四條平行線分別相交于點A1、B1、C1、D1,得到矩形A1B1C1D1.
如圖2,當AH>BF時,若將點G向點C靠近(DG>AE),經(jīng)過探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+.
如圖3,當AH>BF時,若將點G向點D靠近(DG<AE),請?zhí)剿?/span>S四邊形EFGH、S矩形ABCD與之間的數(shù)量關系,并說明理由.
遷移應用:
請直接應用“實驗探究”中發(fā)現(xiàn)的結論解答下列問題:
如圖4,點E、F、G、H分別是面積為25的正方形ABCD各邊上的點,已知AH>BF,AE>DG,S四邊形EFGH=11,HF=,求EG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com