如圖,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以點(diǎn)B為中心逆時(shí)針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)至AB邊延長(zhǎng)線上的C′處,那么AC邊轉(zhuǎn)過(guò)的圖形(圖中陰影部分)的面積是   
【答案】分析:根據(jù)旋轉(zhuǎn)變換的性質(zhì)可得△ABC與△A′BC′全等,從而得到陰影部分的面積=扇形ABA′的面積-小扇形CBC′的面積.
解答:解:根據(jù)旋轉(zhuǎn)變換的性質(zhì),△ABC≌△A′BC′,
∵∠BCA=90°,∠BAC=30°,AB=6,
∴BC=AB=3,
∴陰影面積=-=9π.
點(diǎn)評(píng):本題考查了扇形的面積計(jì)算,解題的關(guān)鍵是看出陰影部分的面積的表示等于兩個(gè)扇形的面積的差,還考查了直角三角形中30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且要求其中一個(gè)三角形是等腰三角形.(保留作圖痕跡,不要求寫(xiě)作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(zhǎng)(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長(zhǎng)為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案