如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.

求證:AM=AN.

 

【答案】

證明見解析

【解析】證明:∵△AEB由△ADC旋轉(zhuǎn)而得,∴△AEB≌△ADC!唷螮AB=∠CAD,∠EBA=∠C。

∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∠ABC=∠C。

∴∠EAB=∠DAB,∠EBA=∠DBA。

∵∠EBM=∠DBN,∴∠MBA=∠NBA。

又∵AB=AB,∴△AMB≌△ANB(ASA)!郃M=AN。

根據(jù)旋轉(zhuǎn)的性質(zhì)可得△AEB≌△ADC,根據(jù)全等三角形對應(yīng)角相等可得∠EAB=∠CAD,∠EBA=∠C,結(jié)合等腰三角形三線合一的性質(zhì)即可推出∠EAB=∠DAB,∠EBA=∠DBA,從而推出∠MBA=∠NBA,然后根據(jù)“角邊角”證明△AMB≌△ANB,根據(jù)全等三角形對應(yīng)邊相等即可得證!

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案